

Charged Hadron R_{CP}

in Au+Au Collisions at $\sqrt{s_{NN}} = 7.7 - 62.4$ GeV

Evan Sangaline* for the STAR Collaboration RNC Program

*UC Davis and Lawrence Berkeley National Laboratory

Motivation

- > The three main goals of the RHIC Beam Energy Scan (BES) were to look for evidence of:
 - I. Critical Point
 - II. Phase Transition
 - III.Turn Off of QGP Signatures
- > Suppression of R_{CP} at high p_T is a key signatures of QGP formation
- The evolution of this signature across collision energies helps to better understand the nuclear phase diagram

The Experiment

Solenoidal Tracker
At RHIC

Methodology

- Mean number of collisions determined for each centrality bin using Monte Carlo Glauber fits
- Particle spectra scaled by the number of collisions
- > The ratio taken giving the nuclear modification factor, RCP:

$$R_{CP}\left(p_{T}
ight) = rac{\left\langle N_{coll}^{AA}
ight
angle_{60-80\%}}{\left\langle N_{coll}^{AA}
ight
angle_{0-5\%}} * rac{d^{2}N_{AA}^{0-5\%}/dydp_{T}}{d^{2}N_{AA}^{60-80\%}/dydp_{T}}$$

Suppression below one is indicative of in medium partonic energy loss in central collisions.

Yield Extraction

Simultaneous fits to time-of-flight and energy loss distributions are done for each $p_{\scriptscriptstyle T}$ bin.

Identified Particle R_{CP}

- Hints of enhancement visible at lower collision energies
- Stronger energy dependence for lighter mesons than for protons

Unidentified Particle R_{CP}

- > Clear suppression at the higher collision energies
- > Becomes a large enhancement at 7.7 and 11.5 GeV
- > HIJING with $k_{\scriptscriptstyle T}$ broadening and no in-medium energy loss qualitatively matches the overall tend
- > Cannot fully describe the R_{CP} at 19.6 GeV and above

Summary

- ➤ A dramatic change in the suppression pattern of R_{CP} measurements across the RHIC BES energies is observed
- Possible indication of the turn off of partonic energy loss in a QGP medium
- > Overall trend is observed in HIJING simulations with no partonic energy loss
- Large contributions due to Cronin effect and radial flow
- HIJING and data show differences in behavior at 19.6 GeV and above
- Suggests that partonic energy loss plays a significant role at these collision energies

