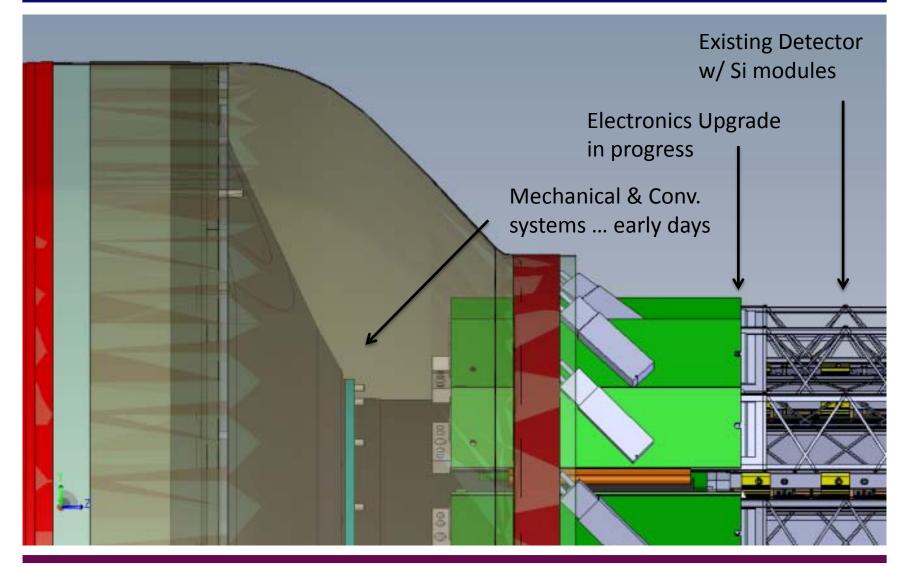


# Conventional Systems: Cooling, Power Supplies, Cables, and a some of that stuff

Jim Thomas Lawrence Berkeley National Laboratory




**SSD Ritter Review** 



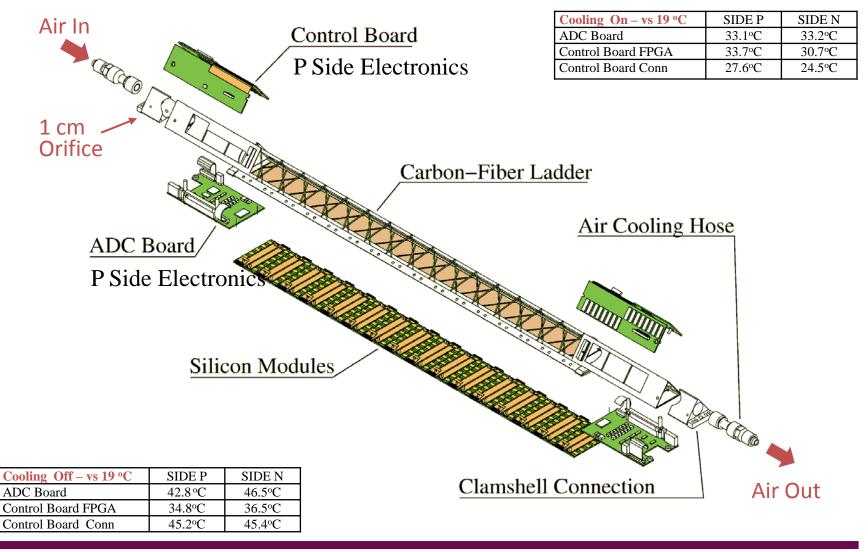


## To Do: Final routing of cooling & cables








SSD Ritter Review



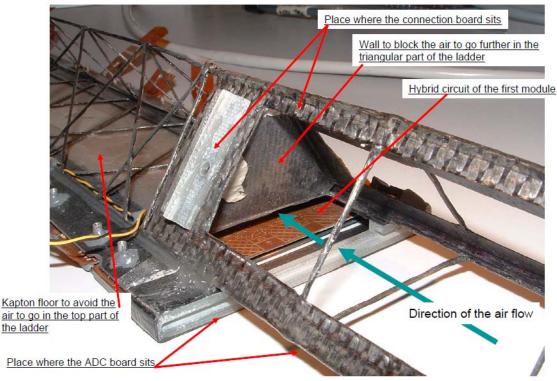


#### The SSD is air cooled - (2002 test results)



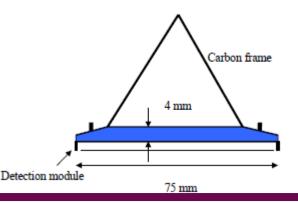





**SSD** Ritter Review





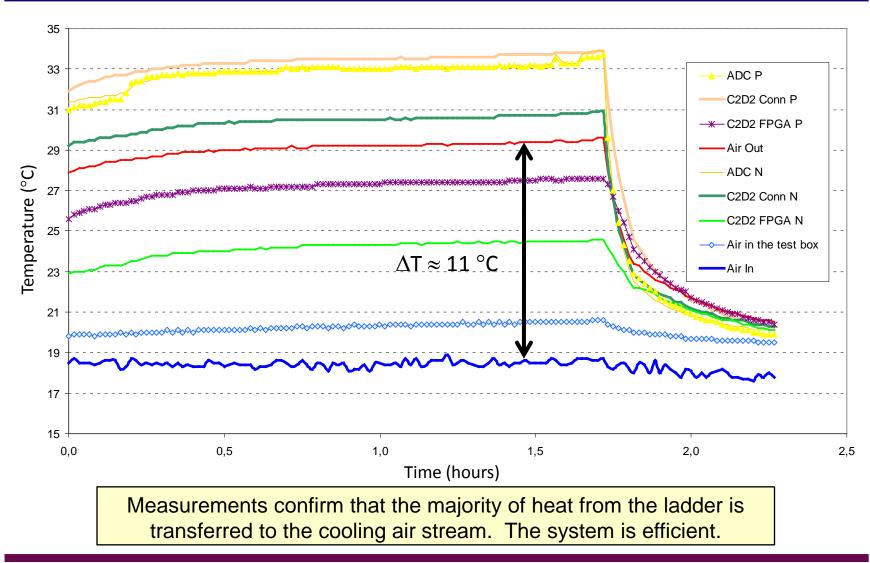

## Air Path in an SSD Ladder





- Air at the midline of the detector travels through a tunnel, 75 mm x 4 mm (or ~ 3 cm<sup>2</sup>)
- Length of this air tunnel is ~ 68 cm (not including ladder board sections on ends)
- An air flow of 1 liter/sec through the tunnel corresponds to an air speed of 3.3 m/sec

- Air enters the ladder board region through an ~ 1 cm orifice
- The entire ladder is wrapped in mylar to trap the air flow inside the triangular structure of the ladder
- The air flow is blocked by a 'wall' to force the air over the Si detectors










## Performance of Cooling System on Ladder #0









STAR HFT



#### New Electronics – New Expectations

| FEE POWER           | Number of elements | Predicted<br>Power | Measured<br>Power |
|---------------------|--------------------|--------------------|-------------------|
| Detection Module    | 16 per 1adder      | 720 mW per         |                   |
| w/ parallel readout |                    | module             |                   |
| TOTAL FEE           |                    | 11.5 W             |                   |

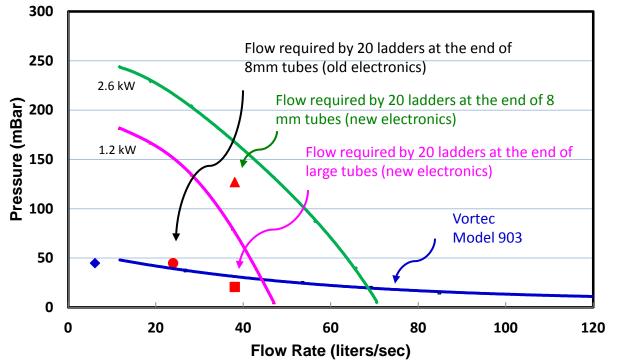
| New Electronics Boards                | Number of    | Predicted Power | Measured |
|---------------------------------------|--------------|-----------------|----------|
|                                       | elements     |                 | Power    |
| Ladder Boards                         | 2 per Ladder | 6.7 W per card  |          |
| <b>Total Electronic Boards/Ladder</b> |              | 13.4 W          |          |

Total Consumption: 25 Watts per Ladder

24 watts typical / 26 watts max

- 25 Joules into 1 liter of air suggests a ∆T of ~ 21 degrees °K at the old flow rate of 1 liter/sec (ambient air is 24° so total is 45°, which is in the danger zone).
  - Heat capacity of lab air is  $0.0012 \text{ J}/\text{cm}^3/\text{°K}$
- So to achieve the same ∆T as before, we need 1.6 liters/second of air flow with a velocity of 0.8 m/sec near the ladder boards and 5.4 m/sec over the Si detectors

We need more air than before, also careful about vibrations








### **Dust Collector Vacuum Sources**





'Large tubes' means 4 long tubes with 2.5 cm (ID) each, then distributed locally to 20 ladders without additional pressure drop

 A wide variety of options are available. Shown above are the vacuum curves for a 1.2 kW and a 2.6 kW vacuum system from a company in California. (Old system was 76 kW)

The airflow can be increased ~2x by using a bigger pump and larger tubes







### More Air ... is available







- The wood products industry uses high volume vacuum sources to clear wood chips from around saws and lathes.
- Thus, there is a commercial line of vacuum sources that provide vacuum with more flow and pressure than we need.
- These vacuum sources can be purchased, off the shelf, and are designed for continuous operation. They run on 3 phase 240 VAC.
- We have tested the 1.2 kW model. Depending on losses, may need 2.6 kW model

#### http://www.dustcollectorsource.com



**SSD Ritter Review** 





#### Power Requirements for the SSD



|         | -2 V   | +2 V    | +5 V    |
|---------|--------|---------|---------|
| typical | 870 mA | 2172 mA | 909 mA  |
| max     | 883 mA | 2186 mA | 1357 mA |

Current for one ladder end (each Nicomat Connector) from "star\_ssdU\_v14" (C. Renard)

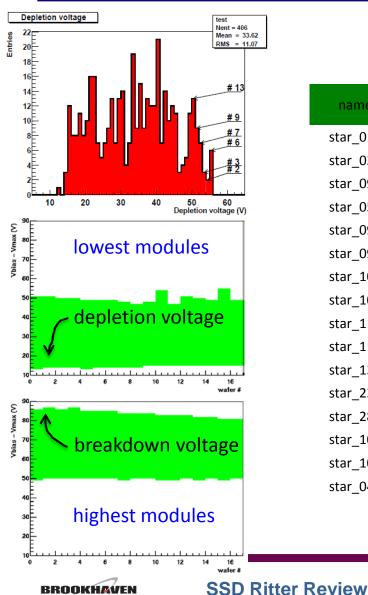
|         | Bias     |
|---------|----------|
| typical | 16*5 μA  |
| max     | 16*10 μA |

Bias current for one ladder (both ends, due to HV jumper)

#### SSD Cable Design Calculator (G. Visser)

|          |       |       | INSUL_T=    | 0.014    | inch      |            |          |          | I        | NSUL_T=    | 0.011    | inch      |            |          |          |          |          |
|----------|-------|-------|-------------|----------|-----------|------------|----------|----------|----------|------------|----------|-----------|------------|----------|----------|----------|----------|
|          |       |       | LENGTH=     | 10       | feet      |            |          |          | I        | LENGTH=    | 85       | feet      |            |          |          |          |          |
|          |       |       | Inner cable |          |           |            |          |          | (        | Outer cabl | e        |           |            |          |          |          |          |
| Service  | Vload | lload | strand      | nStrands | cond, in2 | total, in2 | R        | IR       | I2R      | strand     | nStrands | cond, in2 | insul, in2 | R        | IR       | I2R      | Vsource  |
| +2       | 2.5   | 2.2   | 28CCAW      | 7        | 0.000873  | 0.002955   | 0.144286 | 0.317429 | 0.698343 | 26CU       | 7        | 0.00139   | 0.003224   | 0.497857 | 1.095286 | 2.409629 | 5.325429 |
| -2       | 2.2   | 0.9   | 28CCAW      | 7        | 0.000873  | 0.002955   | 0.144286 | 0.129857 | 0.116871 | 26CU       | 7        | 0.00139   | 0.003224   | 0.497857 | 0.448071 | 0.403264 | 3.355857 |
| +5       | 5     | 1.4   | 28CCAW      | 7        | 0.000873  | 0.002955   | 0.144286 | 0.202    | 0.2828   | 26CU       | 7        | 0.00139   | 0.003224   | 0.497857 | 0.697    | 0.9758   | 6.798    |
| BIAS     | 200   | 0     | 28CCAW      | 1        | 0.000125  | 0.001295   | 1.01     | 0        | 0        | 32CU       | 7        | 0.000352  | 0.001463   | 1.967143 | 0        | 0        | 200      |
| +2 sense | 2     | 0     | 28CCAW      | 1        | 0.000125  | 0.001295   | 1.01     | 0        | 0        | 32CU       | 7        | 0.000352  | 0.001463   | 1.967143 | 0        | 0        | 2        |
| -2 sense | 2     | 0     | 28CCAW      | 1        | 0.000125  | 0.001295   | 1.01     | 0        | 0        | 32CU       | 7        | 0.000352  | 0.001463   | 1.967143 | 0        | 0        | 2        |
| +5 sense | 5     | 0     | 28CCAW      | 1        | 0.000125  | 0.001295   | 1.01     | 0        | 0        | 32CU       | 7        | 0.000352  | 0.001463   | 1.967143 | 0        | 0        | 5        |
|          |       |       |             |          |           |            |          |          |          |            |          |           |            |          |          |          |          |
|          |       |       |             |          | DIA=      | 0.167588   | ſ        | POWER=   | 2.196029 |            |          | DIA=      | 0.17621    | I        | POWER=   | 7.577386 |          |










## Bias Voltage settings for the SSD





| name     | depletion<br>voltage (V) | breakdown<br>voltage (V) |
|----------|--------------------------|--------------------------|
| star_015 | 19                       | 49                       |
| star_026 | 26                       | 61                       |
| star_093 | 20                       | 57                       |
| star_050 | 22                       | 60                       |
| star_096 | 22                       | 56                       |
| star_097 | 21                       | 39                       |
| star_103 | 14                       | 48                       |
| star_106 | 14                       | 46                       |
| star_111 | 18                       | 52                       |
| star_115 | 32                       | 61                       |
| star_132 | 26                       | 58                       |
| star_237 | 25                       | 56                       |
| star_280 | 15                       | 47                       |
| star_107 |                          |                          |
| star_108 |                          |                          |
| star_046 | 22                       | 60                       |
|          |                          |                          |

- The modules were sorted and grouped by operating point to form full ladders (16)
- The lowest depletion voltage (out of 406 modules) is 13 V
- The highest breakdown voltage is 86 V
- Thus need a Bias supply with a range from 0-100 V
- Low current, high stability





#### **Power Supplies**

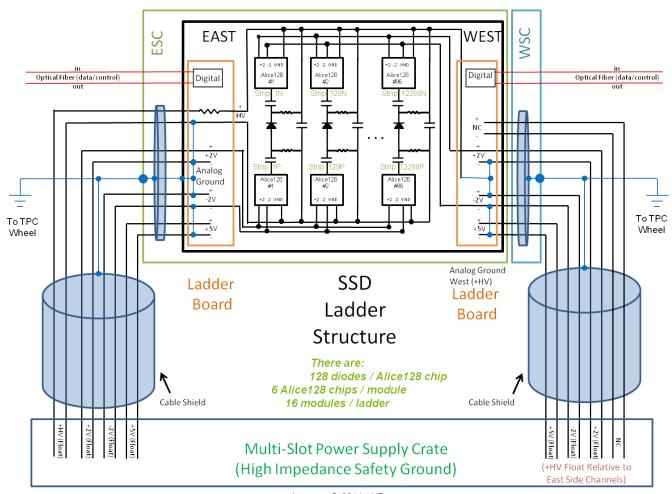


| • |                   |                |           |      |                 |                                        |                                       |   |   |   |
|---|-------------------|----------------|-----------|------|-----------------|----------------------------------------|---------------------------------------|---|---|---|
| 2 |                   |                |           |      |                 |                                        | •                                     | • |   | 1 |
|   | Notice New Wester | Have Value and | (visca um | <br> |                 | (1)<br>(1)                             | -                                     |   |   |   |
|   |                   |                | -         |      | • errecent •    |                                        | •                                     |   |   | • |
|   | creation - 1      |                |           | <br> | • • • • • • • • | • •••••••••••••••••••••••••••••••••••• | • • • • • • • • • • • • • • • • • • • |   | 0 |   |



- Upgrade from previous Caen supplies to achieve greater reliability and better interfaces
- Wiener selected for compatibility with FGT, IST, and MTD
- We will use rear facing MPOD crates with facilities for vertical cooling and fans (8U+1U)
- Choices for LV supplies are
  - MPV8008LI 0-8V 5 amp \*
  - MPV8016 0-16V 5 amp
- Choice for Bias supply is
  - Wiener/ISEG EHS F2 01-F
    High Precision HV Module
    16 channel, w/floating ground










## Grounding Plan



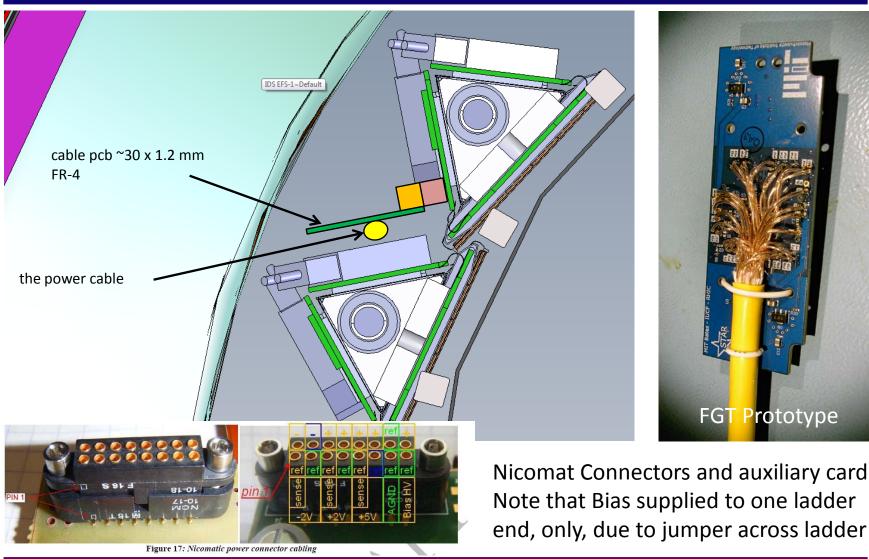


January 15, 2011 – V7

- Digital signals over optic fiber
- Si Modules biased to ~50 V
- Single point ground on East
- Analog data read from both sides of pn junction.

 $p \Rightarrow E, n \Rightarrow W$ 

- Analog on one end held at HV bias potential
- Power supplies for +2, -2 and +5 are floating PS







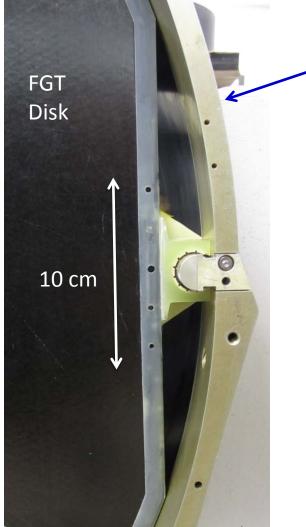

#### Connectors
















#### Cable Trays

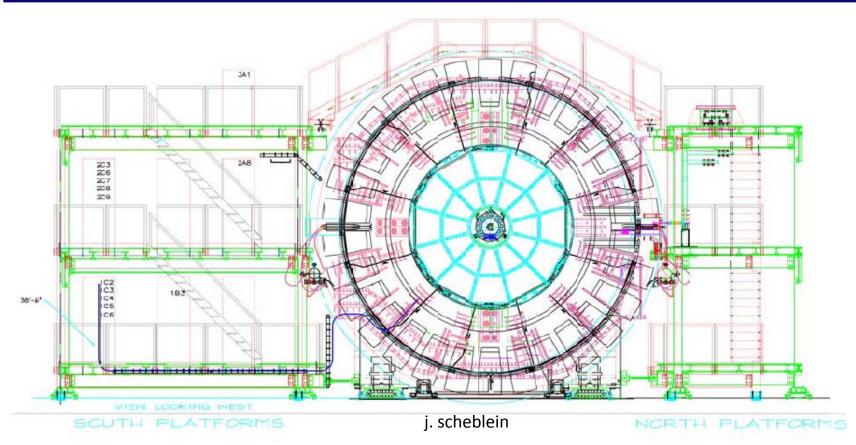




#### West Support Cylinder

- Cable tray needed above and below the FGT rail to hold 5 cables and 5 fiber pairs (5 ladders per tray, 10 ladders left, 10 ladders right, 20 total)
- Cable tray mounted to WSC
- Can only be installed after the FGT has been removed from STAR ... part of summer 13 installation activities
- Not designed yet










### SSD Cable pathways on the platform





- Cable path from Rack 1C6 to PXL patch panel is 70 feet via shortest route
- This summer, we must verify that there is space in these racks (and reserve!)
- Next most desirable path is longer ... on the order of 100 feet







#### The Shroud





#### To Do:

Split the shroud so it is easier to install the SSD ladders

Air in and out for SSD vacuum

Ladder mounts

Cable and air hose routing under the shroud









#### **SSD Upcoming Reviews**



| WBS                      | New Task Name                                                               | New Date   | Old Date   |
|--------------------------|-----------------------------------------------------------------------------|------------|------------|
| <mark>1.4.2.1.1.2</mark> | L2 CP - SSD Prototype Ladder Board Design Finished                          | 10/15/2010 | 10/15/2010 |
| <mark>1.4.2.2.1.3</mark> | L2 CP - SSD QRDO Board design finished                                      | 7/19/2011  | 7/25/2011  |
| <mark>1.4.2.2.1.7</mark> | L3 CP - QRDO Complete                                                       | 8/23/2011  | 5/9/2011   |
| <mark>1.4.2.1.1.9</mark> | L3 CP - Ladder Board Prototype Phase I Complete                             | 10/31/2011 | 7/6/2011   |
| 1.4.4.1.1.2              | L3 CP - PCB for Ladder Board Cable Ready for Fabrication                    | 11/2/2011  | 9/2/2011   |
| 1.4.2.3.2.2              | L3 CP - Production DAQ Design Review Completed                              | 11/28/2011 | 11/28/2011 |
| 1.4.2.2.1.15             | L3 CP - SSD RDO Design Finished                                             | 1/27/2012  |            |
| 1.4.1.2                  | L3 CP - Mechanical Design of SSD components on OSC complete - HFT design    | 6/1/2012   | 6/1/2012   |
| 1.4.4.2.9                | Review to sign off<br>L3 CP - Power Supply Design Review Complete           | 6/29/2012  | 2/8/2012   |
| 1.4.2.2.4                | L2 CP - SSD Preproduction Design Review of RDO                              | 7/13/2012  | 5/30/2012  |
| 1.4.2.1.2.10             | L3 CP - Preproduction Ladder Board PCB Received                             | 8/10/2012  | 8/31/2012  |
|                          | *                                                                           |            |            |
| 1.4.2.1.3.2              | L3 CP - Production Ladder Board Internal Review Completed                   | 10/8/2012  | 10/29/2012 |
| 1.4.2.1.3.4              | L2 CP - SSD Production of Ladder Boards Ready to Begin                      | 11/6/2012  | 11/29/2012 |
| 1.4.2.1.3.7              | L3 CP - Production Ladder Board PCB Received                                | 1/22/2013  | 2/12/2013  |
| 1.4.4.2.12               | L3 CP - Slow controls ready for testing                                     | 1/30/2013  | 4/18/2012  |
| 1.4.2.2.3.7              | L3 CP - Production RDO Board Received                                       | 3/22/2013  | 2/6/2013   |
| 1.4.1.7                  | L3 CP - Mechanical Components on OSC Installed                              | 4/1/2013   | 4/1/2013   |
| 1.4.2.5                  | L3 CP - Electronics Complete                                                | 6/14/2013  | 7/22/2013  |
| 1.4.3.1.5                | L3 CP - Survey Complete                                                     | 7/9/2013   | 5/30/2013  |
| 1.4.4.3.15               | L3 CP - Installation of cooling on STAR platform and Magnet Endcap complete | 8/16/2013  | 7/31/2013  |
| 1.4.3.2.7                | L2 CP - SSD Assembled on OSC Ready for Installation                         | 8/28/2013  | 7/1/2013   |

Complete Future Late

#### Also a safety review, soon, with Yousef Makdisi et al.



**SSD Ritter Review** 







- Excellent progress on many conventional systems
- Nothing particularly unusual or complex
- Much work remains to be done





