

SSD electronics review

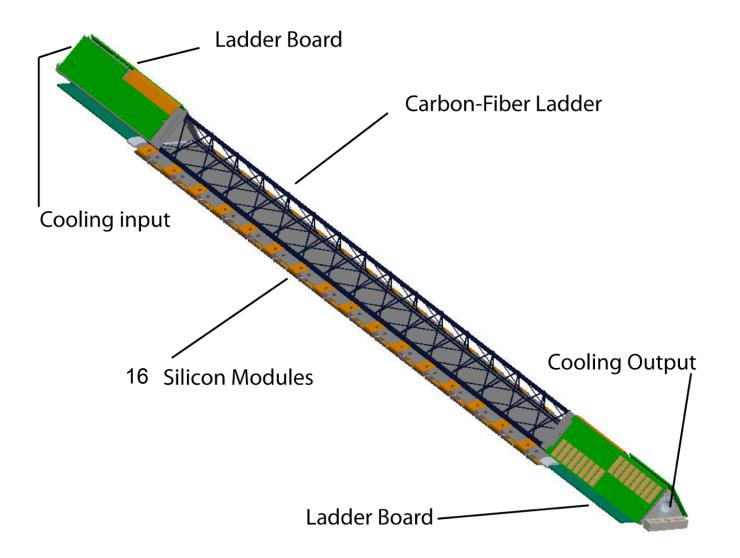
M. LeVine BNL

M.J. LeVine BROOKHRAVEN

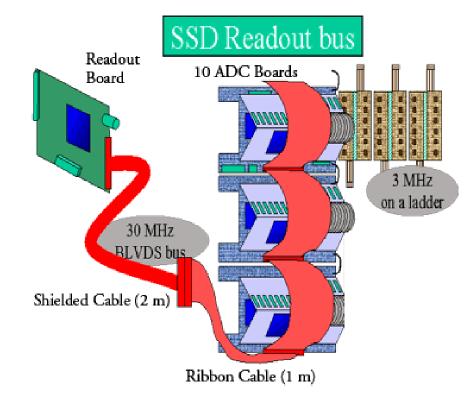
BROOKHAVEN

NATIONAL LABORATORY

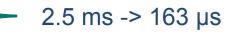
M.J. LeVine


Quick overview of upgrade

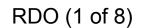
SSD ladder

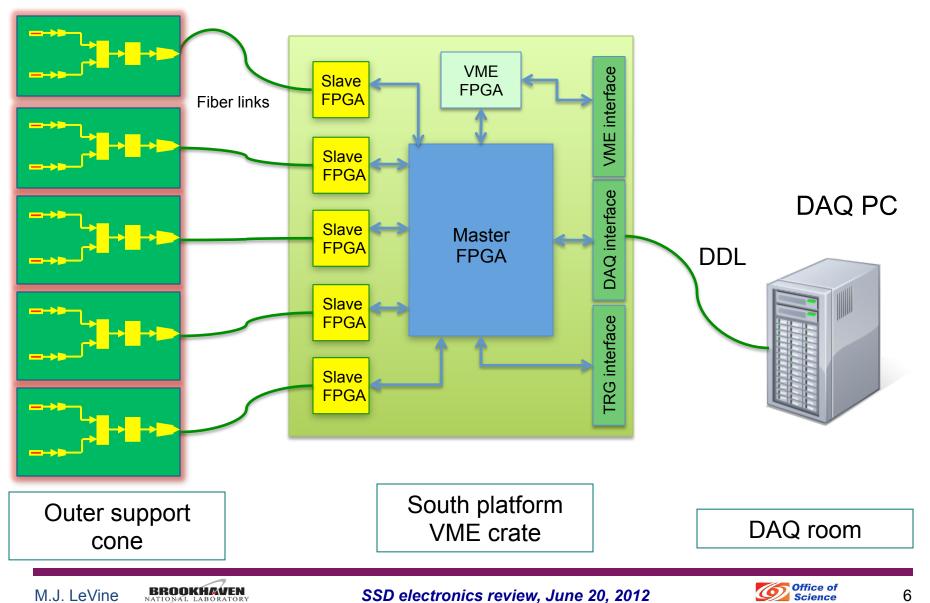


BROOKHAVEN NATIONAL LABORATORY


Previous readout configuration

- Reading out front end:
 - Replace single ADC with 16 ADCs
 - digitize 16 modules in parallel
 - Increase sampling rate to 5.00 MHz
 - All ladders processed concurrently
- Transferring data to PC
 - Increase link throughput to DAQ PC to 120 Mbyte/s per 5 ladders
 - 1850 µs -> 450 µs
 - Multiple (derandomizing) buffers effectively hides this time
- Dead time: 10%@750Hz, <2%@100Hz
- [*cf*. existing: >80%@750Hz,30% @ 100Hz]

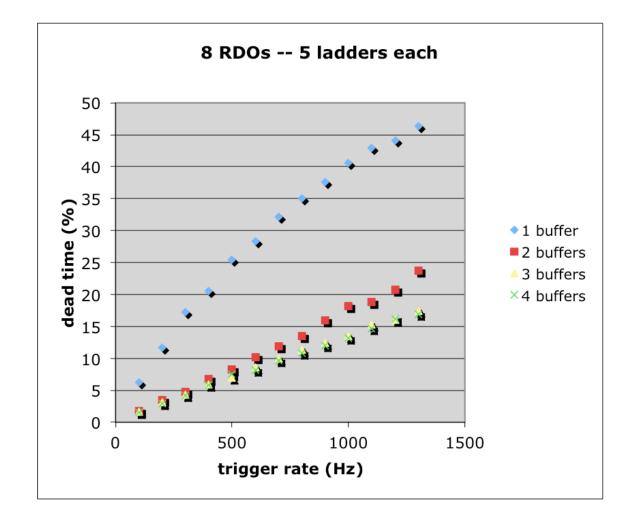




Readout components

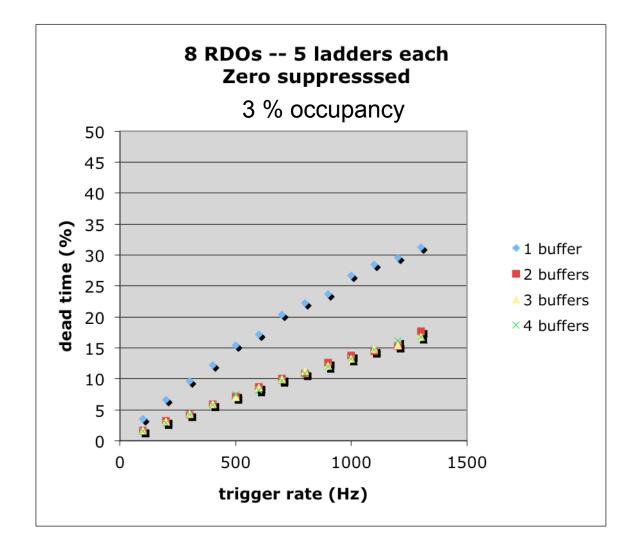
Ladder cards

non zero-suppressed

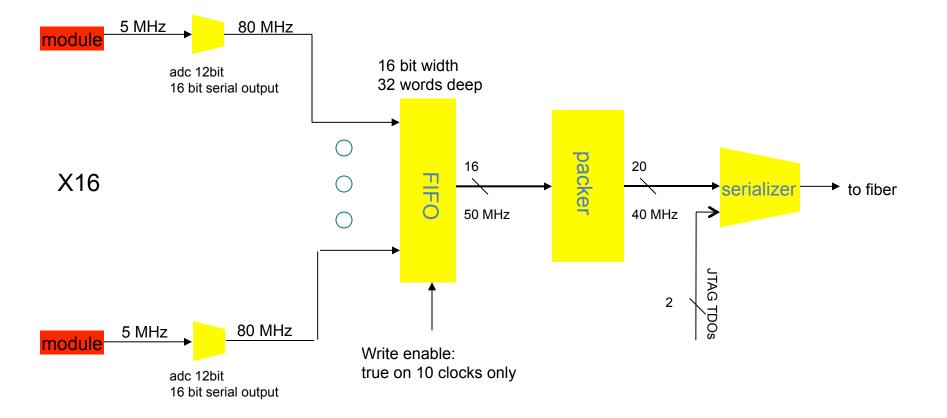

- 3 10-bit ADC values to a 32-bit word
- Fixed order: position in buffer/word -> geographical position of strip

zero suppressed

- Only strips with ADC value above threshold are present
- ADC value (10 bits) + strip location (14 bits)
- One strip per 32-bit word
- Alleviates large memory access burden on DAQ PC
- Doing this in real time in FPGA is simple



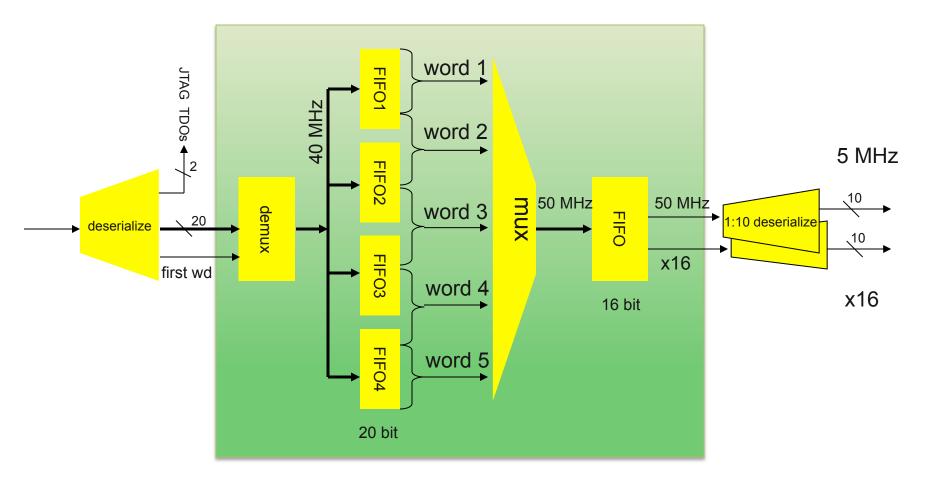
STAR Dead time calculation - no zero suppression


STARead time calculations – zero suppression

Ladder data path

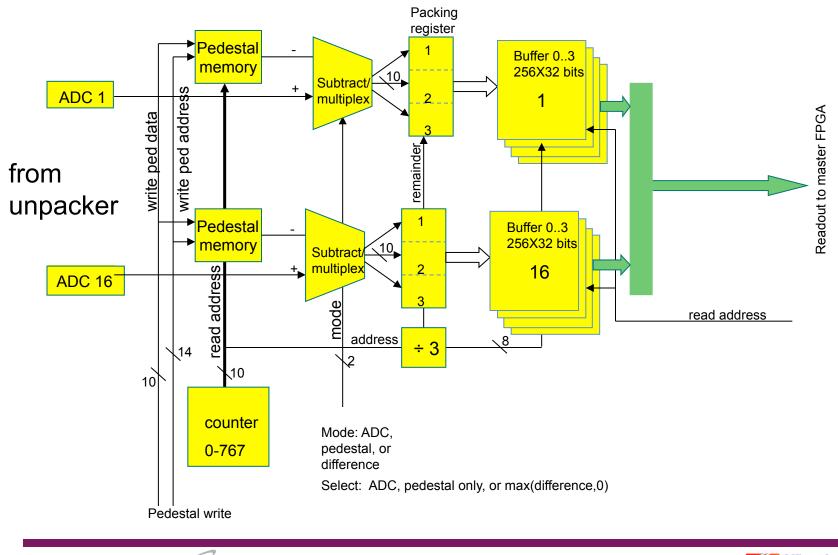
1 set of adc samples: 10 X 16 bits => repacked into: 2 X 4 X 20 bits

M.J. LeVine


BROOKHAVEN NATIONAL LABORATORY

RDO slave - unpacker

unpacking 4 20-bit words to 5 16-bit words



BROOKHAVEN

Slave FPGA – ADC processing

(no zero suppression)

M.J. LeVine

BROOKHAVEN National laboratory

Prototype ladder card testing

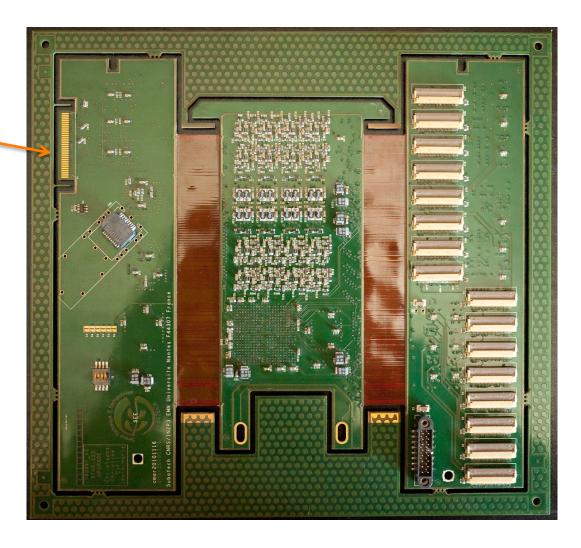
13

M.J. LeVine **BROOKHAVEN**

Ladder board: (inside)

Flex circuit layer Frame cut loose when board is ready for ---installation

BROOKHAVEN

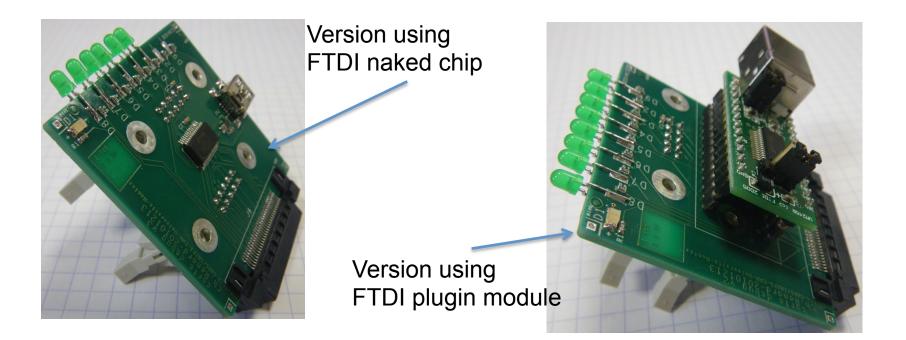


Ladder board: (outside)

Edge connector for debug card

BROOKHAVEN NATIONAL LABORATORY

M.J. LeVine



Debug card (via edge connector)

Provides:

- JTAG header to configure FPGA
- JTAG header for slow controls

 Both will be provided via fiber
- USB access to FPGA

USB test results

Number of devices is 2	pcBufRe
==== Device 0 is Subatech DbgV3n1 ======	pcBufRe
Serial # A7U3EQBC	pcBufRe
	pcBufRe
1) sending the following bytes	pcBufRe
0x41 0x41 0xFF 0xFF 0x42 0x42 0x00 0x00 0x43 0x43	pcBufRe
0xFF 0xFF 0x44 0x44 0x44 0x44	pcBufRe
	pcBufRe
2) sending the following bytes	pcBufRe
0x41 0x41 0xFF 0xFF 0x42 0x42 0x00 0x00 0x43 0x43	pcBufRe
0xFF 0xFF 0x44 0x44 0x44 0x44	pcBufRe
	pcBufRe
FT_Read = 32	pcBufRe
pcBufRead[0] = 0x41 pcBufRead[1] = 0x41	pcBufRe
pcBufRead[2] = 0x41 pcBufRead[2] = 0xFF	pcBufRe
pcBufRead[2] = 0xFF	pcBufRe
pcBufRead[4] = 0x42	pobulik
pcBufRead[5] = 0x42	
pcBufRead[6] = 0x00	Closed
pcBufRead[7] = 0x00	Closed
pcBufRead[8] = 0x43	
pcBufRead[9] = 0x43	
pcBufRead[10] = 0xFF	
pcBufRead[11] = 0xFF	
pcBufRead[12] = 0x44	
pcBufRead[13] = 0x44	
pcBufRead[14] = 0x44	
pcBufRead[15] = 0x44	

ead[16] = 0x41 ead[17] = 0x41 ead[18] = 0xFF ead[19] = 0xFF ead[20] = 0x42ead[21] = 0x42ead[22] = 0x00 ead[23] = 0x00 ead[24] = 0x43 ead[25] = 0x43 ead[26] = 0xFF ead[27] = 0xFF ead[28] = 0x44 ead[29] = 0x44 ead[30] = 0x44 ead[31] = 0x44

Closed device A7U3EQBC

Slow controls JTAG signals

T				
	Program te composition and a second	at data da ana da ata da	un yana ungi	TDO
				TDI
				тск⁴
			i i	TMS

reading register 0x01 ROBOCLKS: 0xaa 0xaa 0xaa 🖌 reading register 0x02 STATUS : 0x3e 0x60 0x3f reading register 0x03 CONFIG : 0x00 0x00 reading register 0x04 DAC VALS: 0x0a 0xa9 0x55 🖌 reading register 0x07 HYBRIDS : 0x00 0x00 reading register 0x08 LATCHUP : 0x00 reading register 0x09 RALLUMAG: 0x00 0x00 reading register 0x0b BYPASS : 0x00 0x00 reading register 0x0c VERSION : 0x26 0x01 0x20 0x11 ✔ reading register 0x0e TEMPS : 0x00 0x00 0x00 0x00 0x00 0x00

reading register 0x1b IDENTITE: 0xb7 🖌

Register with known content at startup

Ladder response vs clock frequency

4.3 MHz

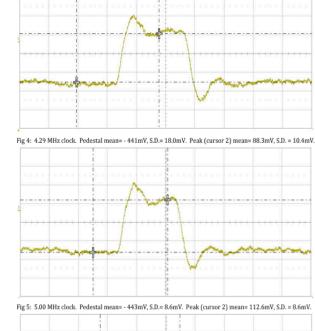
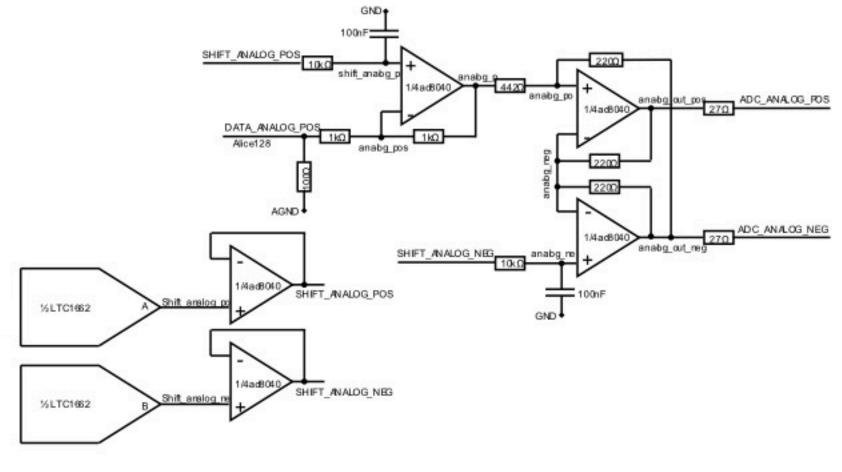


Fig 6: 6.0 MHz clock. Pedestal mean= - 447mV, S.D. = 8.8mV. Peak (cursor 2) mean= 114mV, S.D. = 8.8mV.

Horiz:100 ns/cm

6.0 MHz

5.0 MHz


M.J. LeVine

BROOKHAVEN NATIONAL LABORATORY

Level-shifting for bias side

DOE HFT Review

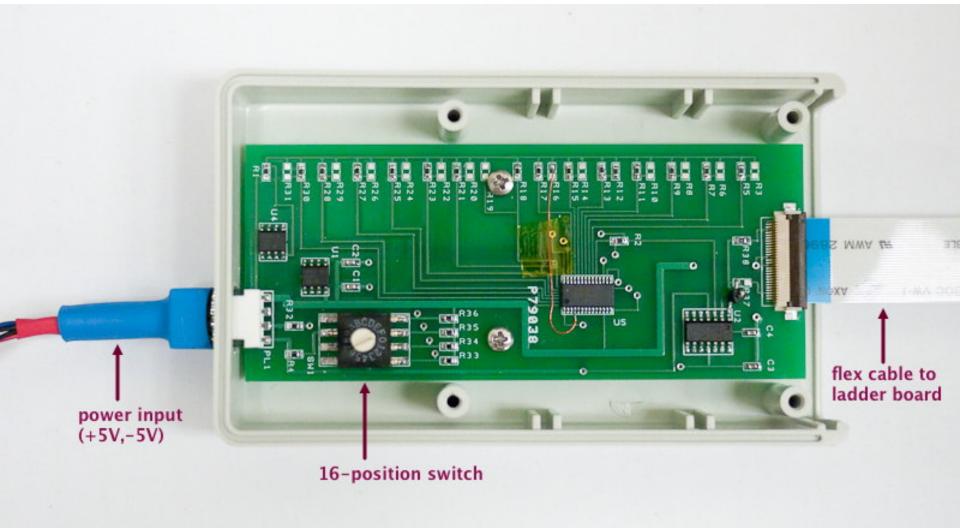
BROOKHAVEN

NATIONAL LABORATORY

 Ionizing radiation causes single bit errors in configuration memory (internal to FPGA)

– Change FPGA behavior

- Scale from observed error frequency in TOF
 Estimate 1 error per 10 minutes in SSD
- Must pro-actively detect these errors by running CRC checks while acquiring data


– Provided by Altera

• Time to reconfigure FPGA: < 1 sec

Fake static source

BROOKHAVEN NATIONAL LABORATORY

SSD electronics review, June 20, 2012

23

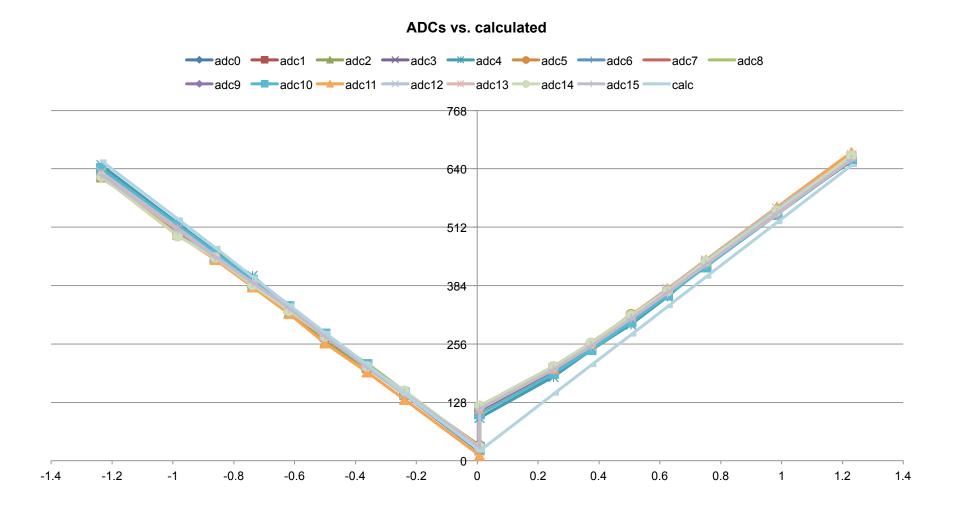
- Use USB to trigger ADC conversion, gather data
- Use "static fake ladder" to provide selectable DC level at each ladder input
- Allows verification of basic functionality of analog section
- Use "dynamic fake ladder" (in design) to verify ADC timing for each ladder.
- Use QRDO (in layout) to verify ladder card functionality up through fiber link

DOE HFT Review

M.J. LeVine

- Software
 - Python script driving
 - Multiple .exe (C code)
- Time to map response for 1 ADC: 30 sec
- Time to map all 16 ADCs: 20 minutes

 Disconnect/connect flex cable
- Basis for future slow controls software
- SC uses JTAG header on debug card
 Will be replaced by fiber protocol


Analog response for all ADCs

STAR

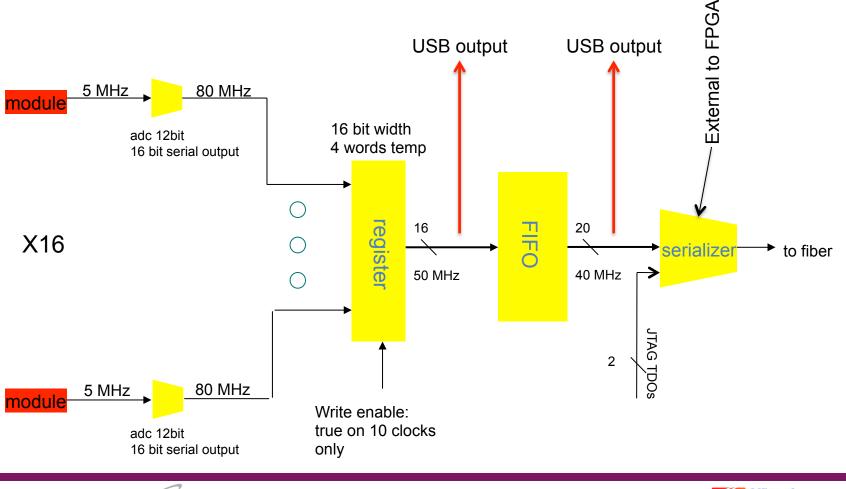
BROOKHAVEN

NATIONAL LABORATORY

M.J. LeVine

- Non-linear behavior of N-face not yet understood
- Discovered we are sensitive to PS fluctuations via DAC
 - Will be separately regulated in production version (prototype in test)

Verification of packing code


USB output for ADC data

BROOKHAVEN

NATIONAL LABORATOR

M.J. LeVine

Install USB spy at output of FIFO

SSD electronics review, June 20, 2012

Science

M.J. LeVine

- Following 4 slides are identical except for notation showing which bits are to be extracted for each word sent to the FIFO
- Lines FIFO[0]...FIFO[7] show the 21-bit word exiting the FIFO

SSD electronics review, June 20, 2012

 Comparison shows that the packer is functioning correctly

DAC A = 300, DAC B = 500

	, -		bit 9	bit 0
ADC[15]: ADC[14]: ADC[13]: ADC[12]: ADC[11]: ADC[10]: ADC[10]: ADC[9]: ADC[9]: ADC[9]: ADC[8]: ADC[7]: ADC[6]: ADC[6]: ADC[5]: ADC[4]: ADC[3]: ADC[1]: ADC[1]:	529 885 889 891 901 893 888 136 887 890 886 901 888 888 888 891 892	0x211 0x375 0x379 0x37B 0x385 0x37D 0x378 0x378 0x377 0x37A 0x376 0x376 0x378 0x378 0x378 0x378 0x378	1 1 (1 1 (01111011

Bit 20 ("first word") FIFO[0] 0x1FFEFF FIFO[1] 0x0107EF FIFO[2] 0x06EF09 FIFO[3] 0x076EF7 FIFO[4] 0x1FF6EF FIFO[5] 0x0B1374 FIFO[6] 0x00E24C FIFO[7] 0x0FC921

Fifo 0 (19..16) Fifo 0 (15..0)

DAC A = 300, DAC B = 500

			bit	bit
			9	0
			=======	================
ADC[15]:	529	0x211	1000	010001
ADC[14]:	885	0x375	1 1 0 1	110101
ADC[13]:	889	0x379	1 1 0 1	111001
ADC[12]:	891	0x37B	1 1 0 1	111011
ADC[11]:	901	0x385	1 1 1 0	000101
ADC[10]:	893	0x37D	1 1 0 1	111101
ADC[9]:	888	0x378	1 1 0 1	111000
ADC[8]:	136	0x088	0010	001000
ADC[7]:	887	0x377	1 1 0 1	110111
ADC[6]:	890	0x37A	1 1 0 1	111010
ADC[5]:	886	0x376	1 1 0 1	110110
ADC[4]:	901	0x385	1 1 1 0	000101
ADC[3]:	888	0x378	1101	111000
ADC[2]:	888	0x378	1101	111000
ADC[1]:	891	0x37B	1101	111011
ADC[0]:	892	0x37C	1101	111100

Bit 20 word") ("first ') ↓
FIFO[0]	0x1FFEFF
FIFO[1]	0x0107EF
FIFO[2]	0x06EF09
FIFO[3]	0x076EF7
FIFO[4]	0x1FF6EF
FIFO[5]	0x0B1374
FIFO[6]	0x00E24C
FIFO[7]	0x0FC921

Fifo 1 (19..12) Fifo 1 (11..0)

DAC A = 300, DAC B = 500

			bit	bit
			9	0
			=======	
ADC[15]:	529	0x211	1000	010001
ADC[14]:	885	0x375	1101	
ADC[13]:	889	0x379	1101	111001
ADC[12]:	891	0x37B	1101	111011
ADC[11]:	901	0x385	1110	000101
ADC[10]:	893	0x37D	1101	111101
ADC[9]:	888	0x378	1101	111000
ADC[8]:	136	0x088	0010	001000
ADC[7]:	887	0x377	1101	110111
ADC[6]:	890	0x37A	1101	111010
ADC[5]:	886	0x376	1101	110110
ADC[4]:	901	0x385	1110	000101
ADC[3]:	888	0x378	1101	111000
ADC[2]:	888	0x378	1101	
ADC[1]:	891	0x37B	1101	111011
ADC[0]:	892	0x37C	1101	111100

Bit 20 word")	
FIFO[0]	0x1FFEFF
FIFO[1]	0x0107EF
FIFO[2]	0x0 <mark>6EF09</mark>
FIFO[3]	0x076EF7
FIFO[4]	0x1FF6EF
FIFO[5]	0x0B1374
FIFO[6]	0x00E24C
FIFO[7]	0x0FC921

Fifo 2 (19..8) Fifo 2 (7..0)

DAC A = 300, DAC B = 500

			bit	bit
			9	0
			=======	============
ADC[15]:	529	0x211	1000	010001
ADC[14]:	885	0x375	1101	1 1 0 1 0 1
ADC[13]:	889	0x379	1101	111001
ADC[12]:	891	0x37B	1101	1 1 1 0 1 1
ADC[11]:	901	0x385	1110	00101
ADC[10]:	893	0x37D	1101	1 1 1 1 0 1
ADC[9]:	888	0x378	1101	111000
ADC[8]:	136	0x088	0010	001000
ADC[7]:	887	0x377	1101	1 1 0 1 1 1
ADC[6]:	890	0x37A	1101	111010
ADC[5]:	886	0x376	1101	1 1 0 1 1 0
ADC[4]:	901	0x385	1110	00101
ADC[3]:	888	0x378	1101	111000
ADC[2]:	888	0x378	1101	111000
ADC[1]:	891	0x37B	1101	1 1 1 0 1 1
ADC[0]:	892	0x37C	1101	111100

Bit 20 word")	` •
FIFO[0]	0x1FFEFF
FIFO[1]	0x0107EF
FIFO[2]	0x06EF09
FIFO[3]	0x076EF7
FIFO[4]	0x1FF6EF
FIFO[5]	0x0B1374
FIFO[6]	0x00E24C
FIFO[7]	0x0FC921

Fifo 3 (19..4) Fifo 3 (3..0)

- Routing error on FPGA discovered
 - Temporary fix using interposer
 - Continue testing using original PCB w/ interposer
- Configure FPGA via debug card JTAG header
- Communication with FPGA via USB verified
- Slow controls functionality (JTAG) verified

- Testing of ladder card has exposed only 2 problems
 - FPGA orientation
 - Corrected on pre-production version
 - Susceptibility of analog section to PS variation
 - Can degrade ability to interpolate centroid
 - Alternate DAC design being tested
 - To be done
 - Verify interaction with ladder modules
 - Token passing
 - JTAG

M.J. LeVine

RROOKHAVEN

- All functions that have been tested are working correctly
- Remaining to verify –

– JTAG to ladder components

- Tests of Avago xcvr show that it dies around 100 kRad (Co⁶⁰ source)
- A rad hard version has been developed for LHC
 - Working prototypes now available
- Almost plug compatible with Avago
 - Requires 2.5V instead of 3.3V
 - Jumper provided on ladder board to select 2.5V supply

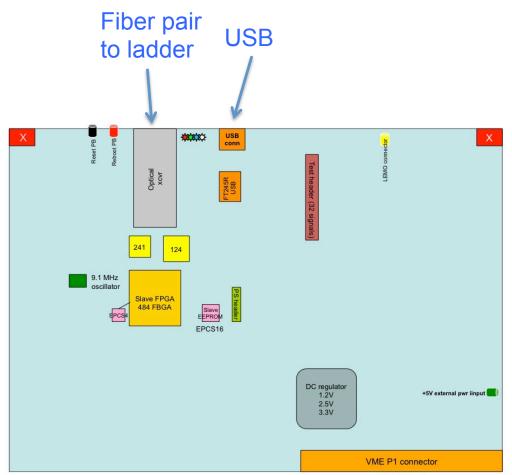
QRDO -

BROOKHAVEN

NATIONAL LABORATOR

M.J. LeVine

- prototype RDO slave
- ladder card test stand

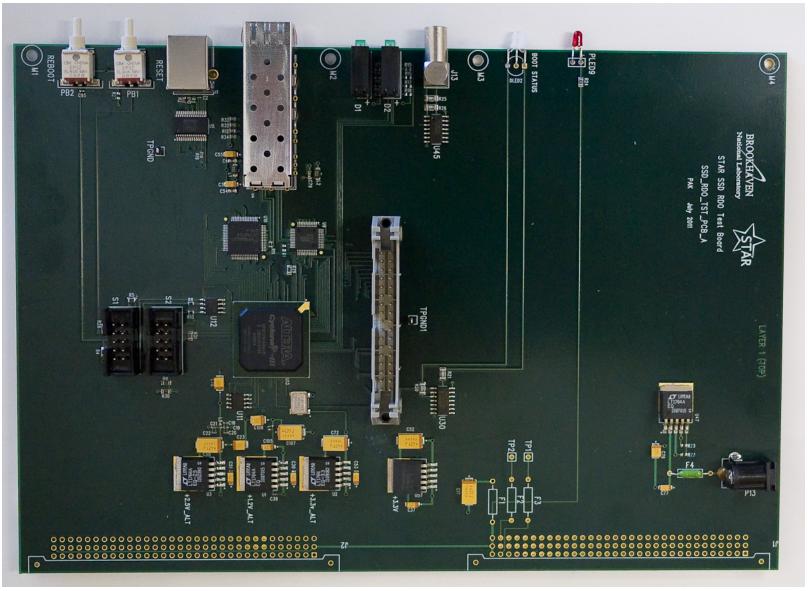

QRDO (Fast-track version of RDO)

- Interfaces to one ladder board
- Implements one slave FPGA
- Only features required for testing ladder board
 - No TRG, DAQ
- All input/output via USB
- Can acquire up to 4 events at full speed

BROOKHAVEN

NATIONAL LABORATOR

M.J. LeVine

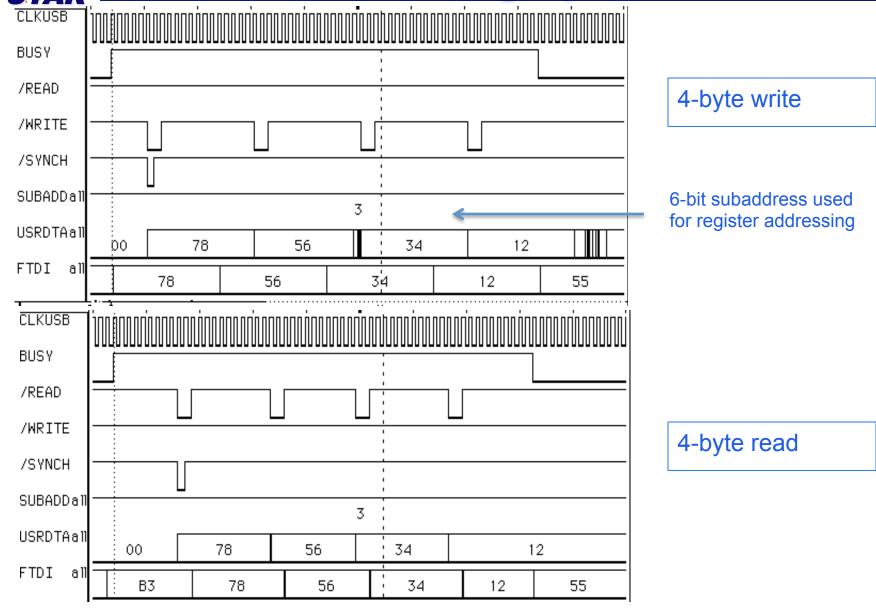


+5V, GND only

QRDO assembled

M.J. LeVine

BROOKHAVEN NATIONAL LABORATORY



- Orsay USB protocol implemented
 - Message layer on top of byte pipe
 - Goal: replace VME (4-byte messages)
- Problems
 - Bad synthesis by Synopsys tool !!
 - Now resolved
- Message protocol working

USB message protocol

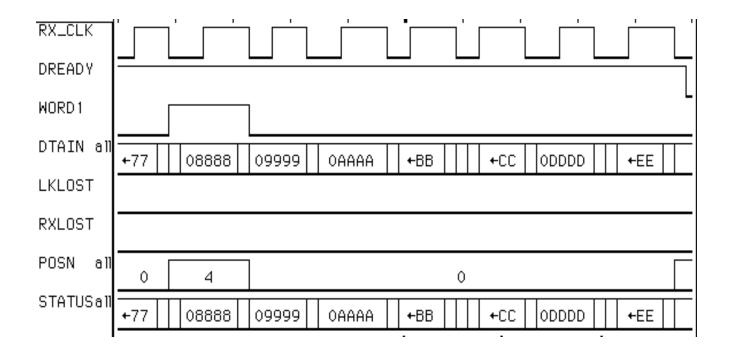
M.J. LeVine BROO

STAR

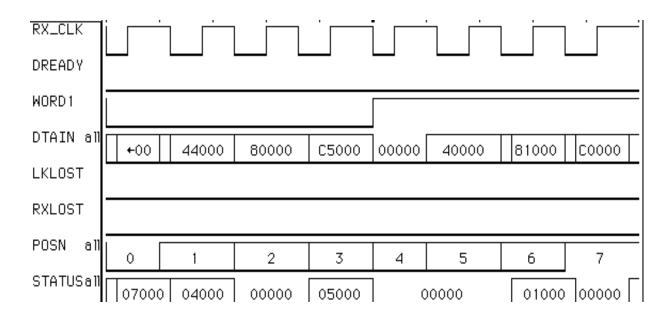
BROOKHAVEN NATIONAL LABORATORY

Testing ladder card with QRDO

BROOKHAVEN NATIONAL LABORATORY



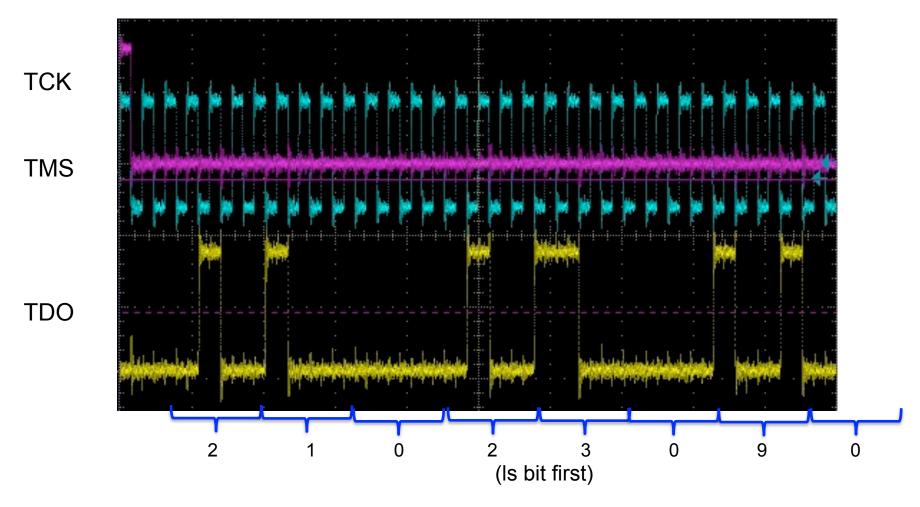
- Generate test patterns on ladder card
- Spy at QRDO on incoming data via fiber with logic analyzer



DREADY='1' signifies data phase Data shown here are artificial for diagnostics

M.J. LeVine BROOKHAVEN NATIONAL LABORATORY

Status words received in QRDO



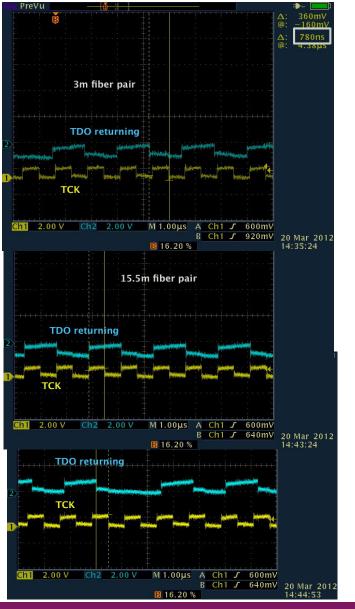
<u>Word</u>	<u>Value</u>	Comment (from Table 52, master document)	
0	07000	configured, OK, serdes clock used	
1	04000	deserializer lock OK	
2	00000	(no optical transceiver problems)	
3	05000	usb present, debug present	
4	00000		
5	00000]	actice #1 (careas with bardware assignment on board)	
6	01000 _	serial #1 (agrees with hardware assignment on board)	
7	00000	ladder 0 (not yet assigned by QRDO)	

JTAG testing via fiber

Read version date register (contents = 0x09032012)

M.J. LeVine

BROOKHAVEN NATIONAL LABORATORY


Test JTAG with full fiber length

←

←

1m

15.5m

Returning TDO is shifted on falling edge of TCK. → There is still a safety margin of 480ns with 31m fiber cable.

Note Δ =780ns with 3m cable, 600ns with 15.5m cable, 480ns with 31m cable.

(scope probes were not properly grounded, thus shifting baselines)

M.J. LeVine

SSD electronics review, June 20, 2012

31m

- Hardware working as expected – PCB layout by Phil Kuczewski
- Firmware status:
 - JTAG to ladder via fiber
 - working
 - Configure ladder FPGA over fiber
 - working

QRDO (RDO prototype)

- Status
 - Have been working with assembled QRDO since Summer 2011
 - Uses USB as control port
 - Not without problems!
 - Allowed verification of data arriving via fiber
 - Allowed JTAG to be debugged and verified
 - Allowed configuration of ladder FPGA to be debugged and verified
 - Download FPGA code via fiber in 0.5s

RDO

M.J. LeVine BROOKHAVEN NATIONAL LABORATORY SSD electronics review, June 20, 2012

U.S. DEPARTMENT OF ENERGY

- Schematic complete
- PCB layout finished June 13, 2012
- Assembled prototypes expected mid July, 2012
- need VME master to test complete functionality

Use USB-VME bridge (Wiener)

Design uses lvds serial lanes

RROOKHAVEN

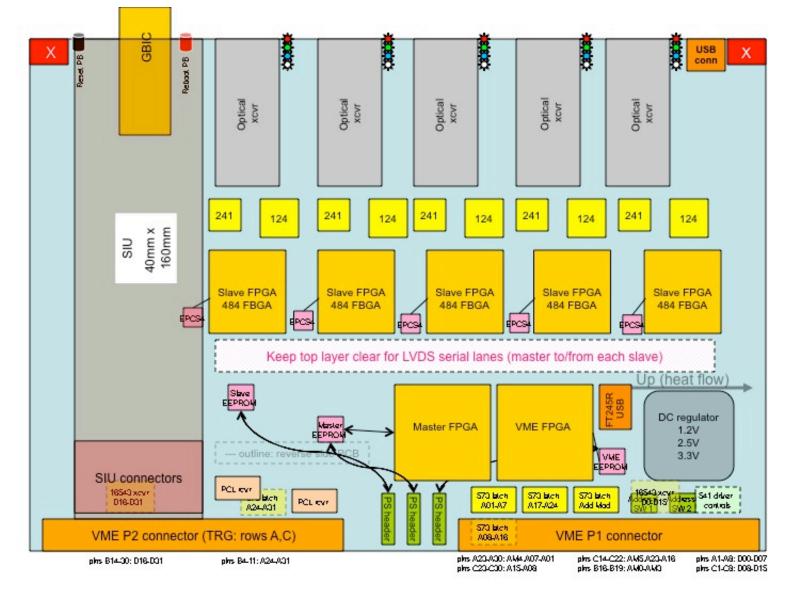
M.J. LeVine

- 4 slave -> master (event data)
- 2 master -> slave (commands)
- 5 slaves -> master required 5 PLLs in master
- Only 4 PLLs available in this chip family

M.J. LeVine

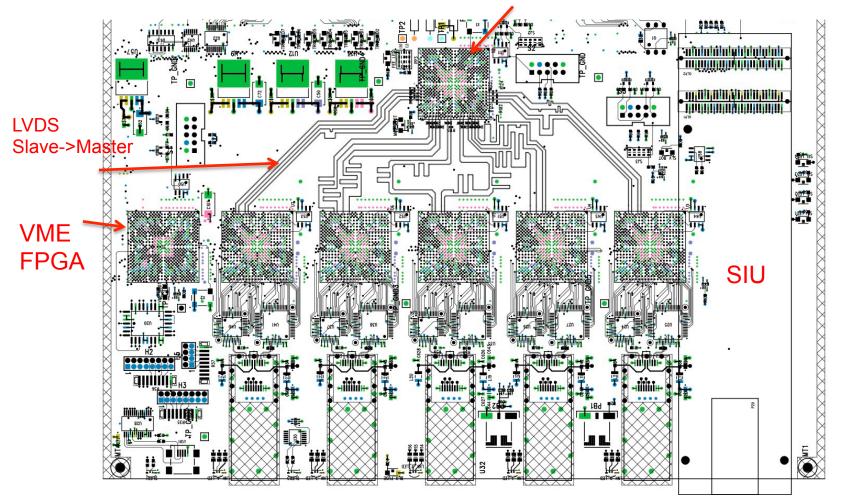
- Parallel bus
 - High freq clock to have required data xfer rate
- Daisy chained highway
 - Too many pins required on slaves

- Large enough FPGA to implement 5 slaves + master
 - Not an option until one month ago



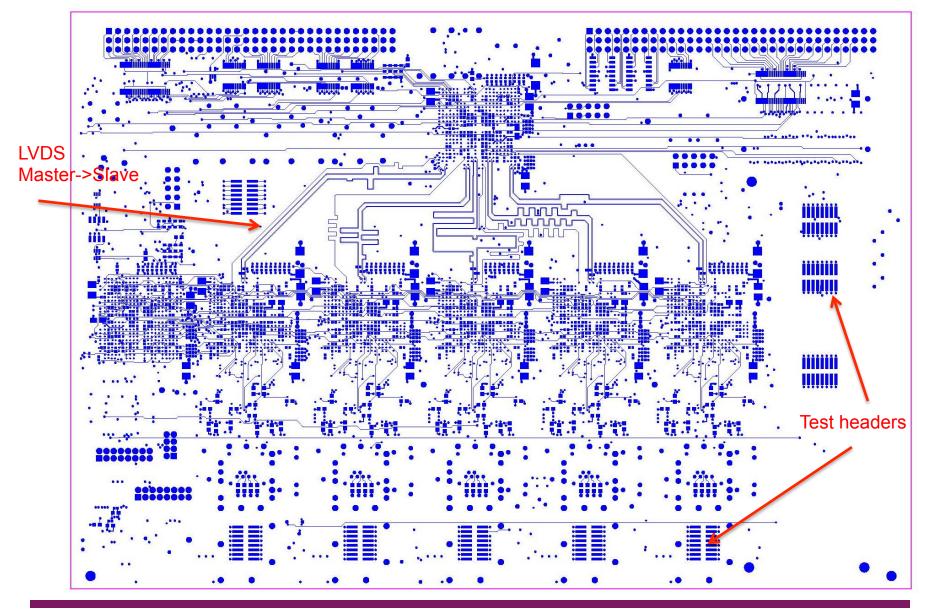
- Workaround chosen:
 - Source synchronous using clock distributed by master
 - Clock captured by slave PLLs and used to transmit to master
 - Requires equal round-trip path lengths
 - LVDS 454 MHz (2.2ns)
 - Path lengths matched to 2.5mm (17 ps) for all 5 slaves

RDO conceptual layout



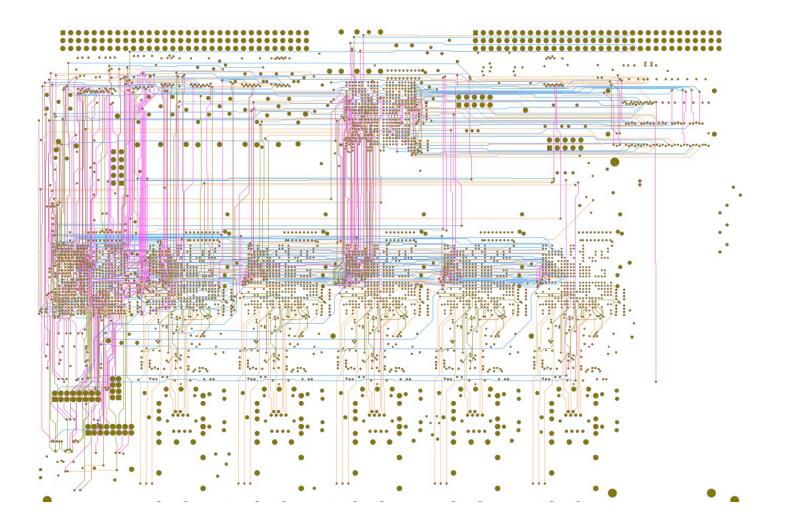
RDO top layer

Master FPGA



BROOKHAVEN NATIONAL LABORATORY

RDO bottom layer


M.J. LeVine

BROOKHAVEN NATIONAL LABORATORY

RDO internal layers

BROOKHAVEN NATIONAL LABORATORY

- 2 DAQ PCs delivered
- 2 D-RORCs installed
 1 PC only
- Scientific Linux 5.x installed (64 bit)
- DAQ software installed (Tonko) 1 PC
- Currently using as a test bed for USB software

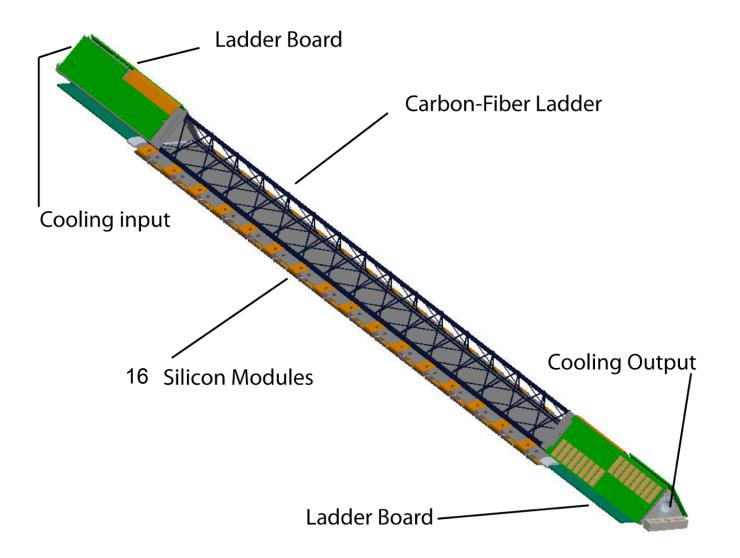
prototype slow controls platform (temporary)

RDO

- Status
 - -6U VME board very tight
 - Components in house
 - Schematic finished
 - Board layout finished
 - Schedule
 - Board ready for fabrication
 - Assembled by mid-July
 - Testing in July-August

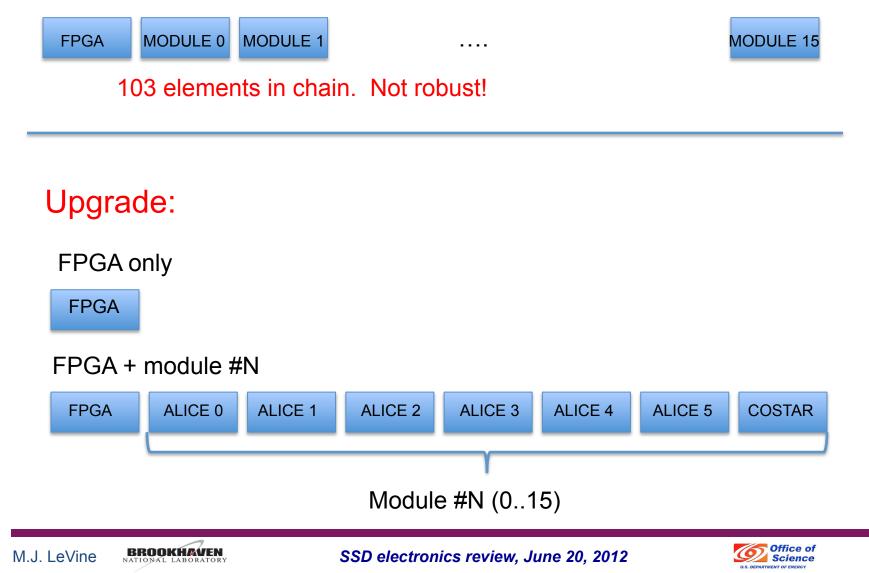
BROOKHAVEN

NATIONAL LABORATORY


M.J. LeVine

SSD slow controls roadmap

SSD ladder



JTAG chain possibilities

Legacy:

FPGA + 16 modules – 7 devices per module !!

FPGA register configures chain

8 bits	1 bit	1 level-shifter bit	1 bit	1 bit	4 hybrid # bits
free	HV side	Load DAC channels	force switchover to use 36.4MHz from xtal	jtag chain with selected hybrid	# of hybrid in jtag chain

Table 73: ladder-FPGA slow-control register (config)

When "jtag chain with selected hybrid" is asserted, The hybrid selected by "# of hybrid in jtag chain" is included in the JTAG chain.

Slow controls - layers

- Top level runs on SC linux machine
 Identical to previous implementation
- Lower level now a hybrid
 - Part on linux VME master
 - Part in RDO slave FPGAs
- Interface between these defined 4/12
- Code for lower level written
 - Not yet debugged
 - Requires a ladder or one module of ladder

Changes required to slow controls

- Must reconfigure chain each time a module is included/excluded
 - Extra steps that were not part of legacy SC software
- Legacy implementation used Corelis VME module
 - Based on TI8990 which fills role of JTAG master engine
 - Output was multiplexed to 4 Readout boards
- Upgrade JTAG masters implemented in (40) slave FPGAs
 - Slow control software must be modified to speak directly to slave FPGAs via VME
 - Advantage: 40 macro instructions can be executed simultaneously

Existing JTAG implementation

Used for tests --

Function: void write register(reg no, value)

Function: unsigned int read_register(reg_no)

Function: void reset_TAP()

Note – read register implemented as non-destructive (uses circulate data)

New interface defined (1)

Interface between existing slow controls software (upper level) and the implementation in the slave FPGAs has been negotiated between Weihua Yan and MJL as the following 3 functions which need to be implemented in VHDL and C++:

Function: scan_ir()

Summary: Scans a bit stream into the TAP instruction register

Usage: void scan_ir(output, length, input) unsigned short *output; unsigned short length; unsigned short *input;

void scan_ir(unsigned short *output, unsigned short length, unsigned short *input) { }

M.J. LeVine

New interface defined (2)

Function: scan_dr()

Summary: Scans a bit stream out the TAP data path

Usage: void scan_dr(output, length, input) unsigned short *output; unsigned short length; unsigned short *input;

void scan_dr(unsigned short *output, unsigned short length, unsigned short *input) { }

New interface defined (3)

Function: circulate_dr()

Summary: Circulates a bit stream thru the TAP controller data path

Usage: void circulate_dr(length, data) unsigned short length; unsigned short *data;

void circulate_dr(unsigned short length, unsigned short *output) { }

