

STAR Results on Charge Separation Measurements

June 1st, 2009

Looking for new physics – Strong Parity Violation

- **The conventional point of view**
	- **"Parity is conserved in the strong and electromagnetic interactions"**
		- **See, for example, Perkins "Introduction to High Energy Physics"**
- **The less-conventional point of view**
	- **It is proposed that in the vicinity of a deconfining phase transition, the QCD vacuum can possess meta-stable domains leading to P and CP violation.**
		- **See, for example, Kharzeev, Pisarski, and Tytgat PRL 81, 512 (1998).**
- **From a humble experimentalist's point of view …**
	- **The theory appears to be fully vetted and there is no reason why these metastable domains can't be formed in HI collisions at RHIC**
	- **The consequences and magnitude of these effects are subject to experimental study and verification**
		- **See, for example, Kharzeev, McLerran, and Warringa arXiv:0711.0950**

I will present a bit of theory to motivate the observations and then the data Thanks to wonderful talks by Harmen Warringa at BNL and Sergei Voloshin at QM2009

Conservation of Global Angular Momentum

- **Electromagnetic charges in motion lead to an electromagnetic magnetic field (not a color magnetic field)**
- **The magnetic fields can reach 1017 gauss. Stronger than on the surface of a neutron star.**
- **May be related to ridge formation etc.**

• **Kharzeev et al. have proposed that angular momentum is (globally) conserved in a heavy ion collision and does not beakup into smaller pieces**

• **If this is true, then there should be an angular momentum vector that lies perpendicular to the reaction plane**

• **Kharzeev et al. assume massless quarks in this study**

• **Chirality and helicity are the same for massless particles … so in the limit of zero mass, it is easy to define chirality (not so easy for non-zero mass).**

Quarks interact with the B field via their spin

- **Assume: chiral symmetry is restored in a QGP**
- **Assume: meson masses drop to ~0 after chiral symmetry restoration**

In chiral limit:

Particles/Antiparticles with right-handed helicity

have spin and momentum parallel

In chiral limit:

Particles/Antiparticles with left-handed helicity

have spin and momentum anti-parallel

How does the B field affect the Quarks?

A magnetic field will align the spins, depending on their electric charge

The momenta of the quarks align along the magnetic field

A quark with right-handed helicity will have momentum opposite to a left-handed one

In this way the magnetic field can distinguish between right and left

Jim Thomas - LBL 5 H. Warringa

How does the Magnetic field affect Chirality?

A magnetic field will align the spins, depending on their electric charge

Positively charged particles move parallel the magnetic field

Negatively charged particles move to antiparallel to magnetic field

<u>An electromagnetic current is created along the magnetic field</u> **Jim Thomas - LBL 6 H. Warringa**

Separation of Charge wrt the reaction plane

• **The signal is manifestly parity odd x** ⇒ **-x , p** ⇒ **-p** ⇒ **++ ⁺ -- - ⁺ ⁺ + - - -**

• **The charge-flow asymmetry is too small to be seen in a single event but may be observable with correlation techniques**

• **If a chirally restored bubble is created in a heavy ion collision, the positively charged quarks will go up … then hadronize … and yield an excess of positive pions above the plane**

• **Unfortunately, it could be just the opposite in the next event depending on the topological charge in the bubble**

A signal is present in the STAR data

quenched

-- -

++ ⁺

- **Naively, theory suggests ++, -- correlations equal and opposite in sign to +-**
	- **Kharzeev suggests 'bubble' on edge of collision zone and one side absorbed**
- **But all of this requires careful explanation …**

Jim Thomas - LBL 8

The STAR Detector at RHIC

- **Tracking is done by the Main TPC and independently by two Forward TPCs**
- **ZDC-SMD measures spectator neutrons and can be used to determine the first order reaction plane**
- **Tracking cuts:**
	- **|**η**|** < **1.0 (Main TPC)**
	- **-3.9** < η< **-2.9**
		- **3.9** < η< **2.9 (FTPCs)**
	- $-$ 0.15 $<$ p_T $<$ 2.0 GeV/c

The data presented here were taken during RHIC Run IV and are based on:

$$
f(\phi) = \frac{b'_0}{2} + \sum_{n=1}^{\infty} (a'_n \sin(n\phi) + b'_n \cos(n\phi))
$$

where

$$
a'_{n} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(\phi) \sin(n\phi) \, d\phi \quad \text{for} \quad n = 1, 2, ...
$$

$$
b'_{n} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(\phi) \cos(n\phi) \, d\phi \quad \text{for} \quad n = 0, 1, 2, ...
$$

If we want to test if parity is conserved then we should keep the extra terms

$$
E\frac{dN^3}{d^3p} = \frac{1}{2\pi} \frac{d^2N}{p_r dp_r dy} (1 + \frac{2a_1 \sin(\Delta\phi) + 2b_1 \cos(\Delta\phi) + 2a_2 \sin(2\Delta\phi) + 2b_2 \cos(2\Delta\phi) + \dots)
$$

where

$$
a_n = \pi a'_n = \sum_i \sin(n(\phi_i - \Psi_R)) , \qquad b_n = \pi b'_n = \sum_i \cos(n(\phi_i - \Psi_R))
$$

The standard HI flow analysis assumes $a = 0$ and assigns $b_n \equiv v_n$

Interpreting Flow – order by order

n=1: Directed Flow has a period of 2π **(only one maximum)**

- v_1 measures whether the flow goes to **the left or right – whether the momentum goes with or against a billiard ball like bounce off the collision zone**
- **n=2: Elliptic flow has a period of** π **(two maximums)**
	- $-$ v₂ represents the elliptical shape of **the momentum distribution**

Perform a Fourier Transform to isolate the coefficients

a

non-conserving

isotropic parity

2

 d^2N

 $p_T dp_T dy$

 $T^{\mathbf{u}p}$

1

π

3

 $E\frac{dN}{r^3}$

 d^3p

3

The Experimental Observable

• **The coefficients for the Fourier expansion of the invariant yield are**

 $v_n \equiv \langle \cos(n(\phi - \Psi_R)) \rangle$ **or** $v_n^2 = \langle \cos(n(\phi_i - \phi_j)) \rangle$

- $-$ where the average is taken over all particles in the event and ψ_R is the known **reaction plane angle (e.g. from the FTPC if we are using TPC data)**
- **The second method is a true two particle correlation (many details left out)**
- Under certain assumptions v_1 is directed flow
	- $-$ Note that a 'normal' v_1 measurement for pions in a Au-Au reaction has an **intrinsic symmetry that suggests weighting by sign(**η**)**
	- **Don't do this. We are looking for charge flow that goes up/down so choose to do the sum without sign(η) weighting and thus the 'normal' v₁ will cancel out. (See next bullet). This assumes symmetric** η **acceptance.**
- **The signal is small … so S.V. proposed a clever observable to help find it**
	- Mixed Harmonics: $\big\langle\cos(\phi_i-\phi_k)\,\cos(\phi_j-\phi_k)\,-\,\sin(\phi_i-\phi_k)\,\sin(\phi_j-\phi_k)\,\big\rangle\,=\,(\mathrm{v}_1^2-a_1^2)\,\mathrm{v}_2$ 2 $\cos(\phi_i - \phi_k) \cos(\phi_j - \phi_k) - \sin(\phi_i - \phi_k) \sin(\phi_j - \phi_k) \rangle = (v_1^2 - a_1^2) v_1$
	- Measure $(v_1^2 a_1^2) \cdot v_2$ because v_2 is large and it amplifies the parity nonconserving signal, a_1 , while preserving reasonable statistical errors.
	- **−** The observable $(v_1^2 a_1^2) \cdot v_2$ is not parity odd, but it is a good way to **measure charge sensitive flow because** $v_1 \Rightarrow 0$ **and** $(v_1^2 - a_1^2) \cdot v_2 \Rightarrow -a_1^2 \cdot v_2$

The observable:
$$
-1 * \langle a_{1,\alpha} a_{1,\beta} \rangle v_{2,c} \approx \langle \cos(\phi_i + \phi_j - 2\phi_k) \rangle
$$

Like Sign and Opposite Sign Correlations

- **A charge separation signal appears in the data; independent of how we determine the reaction plane with different estimates of** Ψ_R **(i.e.** ϕ_c **)**
	- Signal is present if Ψ_R is found with the TPC, FTPC, or even ZDC.
	- Systematic errors in panel II, above, cover the range introduced by using v₂{2} **or v₂{4} in the calculation**
- \bullet $\langle\ \cos(\phi_i + \phi_j 2\phi_k\)\ \rangle / \ {\rm v}_{2,c}\ \ \approx\ \ -1 * \big\langle a_{_{1,\alpha}}\ a_{_{1,\beta}}\big\rangle$ and so is a candidate PV signal – **Same sign** *a***ⁱ***,*^γ **flow is negative … Opposite sign** *a***ⁱ***,*^γ **flow is positive**

Expectations, if it is topologically induced PV

- Magnitude: $|a| \sim Q/N_{\pi^+}$ where $Q = N_L N_R = 0, \pm 1, \pm 2, ...$ \checkmark |a| ~ 10⁻² or equivalently $|a|^2 \sim 10^{-4}$ and independent of how Ψ_R is found
- Charge Combinations for the observable $\big\langle \cos(\phi_i + \phi_j 2\phi_k^-) \big\rangle$ / $\mathrm{v}_{\mathrm{2,}c}$ $\sqrt{a_+ a_+} = \langle a_- a_- \rangle = -1 * \langle a_+ a_- \rangle$
	- **Same sign** $a_{i,y}$ **flow is negative … Opposite sign** $a_{i,y}$ **flow is positive**
	- **Particle interactions in the medium may cause suppression of the back to back correlations**
		- **Quenching is a possible and may be expected … more theoretical work req'd**
- **Species Dependence**
	- **Proportional to Z2 but quenching may be smaller in smaller systems**
- **Centrality Dependence**
	- **If the P-violating domain does not change size with centrality, then correlator should depend on 1/N_{mult} times magnitude of B field**
		- The effect should decrease with centrality faster than 1/N_{mult}
- **Rapidity dependence**
	- **Correlated particles come from a domain of ~ 1 fm, and** ∆η ≈ **1**

Jim Thomas - LBL | **Lets look at some of these expectations to see if they hold true** | 14

Species and Energy Dependence

- **Au-Au data compared to Cu-Cu data**
	- **Results suggests that Cu-Cu data, as a function of centrality, is larger**
	- **Possibly suggesting that a smaller system is less quenched**
- **200 GeV data compared to 62 GeV data – signal is similar in both**
	- **Shaded regions represent uncertainty in elliptic flow**
	- **Solid and dashed lines are possible backgounds (see talk by E. Finch)**

Centrality and/or Multiplicity Dependence (& other systematics)

- Au-Au 200 Correlator decreases with centrality faster than 1/N_{mult} **for same sign correlations**
	- **Apologies for the use of RefMult … it is uncorrected multiplicity into** ±**0.5 unit of** η
- **Correlator * RefMult .vs. RefMult … plotted for Positive (left) and Negative (right) polarity of the STAR magnet**
	- **Good study of systematics of B field … also acceptance corrections (see PRC)**

Rapidity Dependence

- **Rapidity dependence of the 10-30 and 30-50% centrality bins**
- **Typical hadronic width of about one unit of pseudo-rapidity**
- Shaded bands indicate uncertainties in the v_2 measurements
	- **Error bands estimated with 2 and 4 particle cumulants as bounds**

Background – a few words

- **Our observable is parity even and so may contain effects that are not related to strong parity violation**
- **Structure of correlator allows control of a wide class of backgrounds**

 $\left(\left({\rm v}_1^2 + B_{_{in}} \right) \! \! - \! \left(a_1^2 + B_{_{out}} \right) \! \right) \, {\rm v}_2$ $\langle \cos(\phi_i - \phi_k) \cos(\phi_j - \phi_k) \rangle - \langle \sin(\phi_i - \phi_k) \sin(\phi_j - \phi_k) \rangle = (\left(v_1^2 + B_{in}) - (a_1^2 + B_{out})\right)$ v

- As previously noted, the directed flow terms, v_1 , sum to zero due to our **choice to *not* weight the sum by sign(**η**)**
- **The correlator represents the difference between correlations projected onto an axis in the reaction plan and an axis perpendicular to the reaction plane**
	- **This removes correlations among particles that are not related to the reaction plane orientation**
- **So a source of background that may persist in the data are particles from a cluster (resonance decay or jet) where the cluster is flowing with respect to the reaction plane**
	- **These studies, and other simulations studies, will be presented by E. Finch**

Summary

- **D. K. et al. have hypothesized that charge separation may be an indication of Strong Parity Violation in heavy ion collisions**
- **The correlator**

2 2 $\cos(\phi_i - \phi_k) \cos(\phi_j - \phi_k) - \sin(\phi_i - \phi_k) \sin(\phi_j - \phi_k) \rangle = (v_1^2 - a_1^2) v_1$

is a parity even observable that is sensitive to charge separation effects, wrt the reaction plane, and is insensitive to many different background effects

- **STAR sees clear evidence for charge separation in Au-Au and Cu-Cu collisions at 62 and 200 GeV**
	- **The signal is small … few * 10-4**
	- **The signal is stronger in smaller systems and approximately independent of collision energy**
- **Qualitatively the results agree with the magnitude and gross features of the theoretical predictions for parity violation in heavy ion collisions**

Backup Slides

Full Cumulant – Analysis and Results

$$
\begin{aligned}\n&\left\langle \left\langle e^{i\left(\phi_{i}+\phi_{j}-2\phi_{k}\right)}\right\rangle \right\rangle =\left\langle e^{i\left(\phi_{i}+\phi_{j}-2\phi_{k}\right)}\right\rangle \\
&-\left\langle e^{i\left(\phi_{i}+\phi_{j}\right)}\right\rangle \left\langle e^{i\left(-2\phi_{k}\right)}\right\rangle -\left\langle e^{i\left(\phi_{i}-2\phi_{k}\right)}\right\rangle \left\langle e^{i\left(\phi_{j}\right)}\right\rangle \\
&-\left\langle e^{i\left(\phi_{i}\right)}\right\rangle \left\langle e^{i\left(\phi_{j}-2\phi_{k}\right)}\right\rangle +\left\langle e^{i\left(\phi_{i}\right)}\right\rangle \left\langle e^{i\left(\phi_{j}\right)}\right\rangle \left\langle e^{i\left(-2\phi_{k}\right)}\right\rangle\n\end{aligned}
$$

Real Terms

$$
a_1^2 v_2 = \langle \cos(\phi_i + \phi_j - 2\phi_k) \rangle
$$

$$
- \langle \cos(\phi_i + \phi_j) \rangle \langle \cos(-2\phi_k) \rangle - \langle \cos(\phi_i - 2\phi_k) \rangle \langle \cos(\phi_j) \rangle
$$

$$
- \langle \cos(\phi_i) \rangle \langle \cos(\phi_j - 2\phi_k) \rangle + 2 \langle \cos(\phi_i) \rangle \langle \cos(\phi_j) \rangle \langle \cos(-2\phi_k) \rangle
$$

Imaginary Terms enter via cross-terms to create additional real terms

+
$$
\langle \sin(\phi_i + \phi_j) \rangle
$$
 $\langle \sin(-2\phi_k) \rangle$ + $\langle \sin(\phi_i - 2\phi_k) \rangle$ $\langle \sin(\phi_j) \rangle$
+ $\langle \sin(\phi_i) \rangle$ $\langle \sin(\phi_j - 2\phi_k) \rangle$ - 2 $\langle \sin(\phi_i) \rangle$ $\langle \cos(-2\phi_k) \rangle$
- 2 $\langle \sin(\phi_i) \rangle$ $\langle \cos(\phi_j) \rangle$ $\langle \sin(-2\phi_k) \rangle$ - 2 $\langle \cos(\phi_i) \rangle$ $\langle \sin(\phi_j) \rangle$ $\langle \sin(-2\phi_k) \rangle$

Full 3 particle cumulant for Run IV Au-Au 200

Fri Feb 6 18:44:36 2009

- **Full 3 particle cumulant**
	- **Complete acceptance corrections used & required**
- **With particle ID for pions**
- **Jim Thomas - LBL 22 Electrons rejected as well as PID for pions**