

CME Focus Group

(updated with a new figure and a backup slide)

Jim Thomas February 17th, 2023

Jim Thomas

(1) 17-Feb-23

CME: Separation of Charge with respect to the reaction plane

The signal is manifestly odd
 x ⇒ -x , p ⇒ -p
 but the observable will be even

 The charge-flow asymmetry is too small to be seen in a single event but may be observable with <u>correlation techniques</u>

- If a chirally restored bubble is created in a heavy ion collision, the positively charged quarks will go up ... then hadronize ... and yield an excess of positive pions above the plane
- Unfortunately, it could be just the opposite in the next event depending on the topological charge in the bubble

Jim Thomas

(2)

The observable and the tools for analysis

- n=1: Directed Flow has a period of 2π (only one maximum)
 - $-v_1$ measures whether the flow goes to the left or right – whether the momentum goes with or against a billiard ball like bounce. For collisions of identical nuclei, symmetry forces v₁ to be an odd function of η

n=2: Elliptic flow has a period of π (two maximums)

 $-v_2$ represents the elliptical shape of the momentum distribution. It is an even function of η for identical nuclei

isotropic

parity

non-conserving

directed

Jim Thomas

(3) 17-Feb-23

v₁ and v₂ in Au-Au 200 GeV (~1 Million events from Run 19)

 v_1 and v_2 doing familiar things (Note: $\Psi_1 \& \Psi_2 RPs$ measured in TPC)

Jim Thomas

(4) 17-Feb-23

Several more low order terms ...

The γ observable

• The coefficients of the Fourier expansion for the invariant yield are

 $\mathbf{v}_n \equiv \langle \cos(n(\varphi - \Psi_R)) \rangle$ or $\mathbf{v}_n^2 = \langle \cos(n(\varphi_i - \varphi_j)) \rangle$

- where the average is taken over all particles in the event and ψ_R is the known reaction plane angle (e.g. from the TPC or the EPD)
- The equation on the right is a multi particle correlation
- Under certain assumptions v₁ is directed flow
 - Note that 'normal' v_1 measurements in a symmetric Au-Au collision have an intrinsic symmetry that requires weighting by sign(η) to measure v_1 _{Hydro}
 - Tool: look for charge flow (up/down) without sign(η) weighting because v_{1 Hydro} will cancel out if we have symmetric η acceptance.
- γ is a clever observable. A triple correlation $\Rightarrow \langle \cos(\phi_i + \phi_j 2\phi_k) \rangle$
 - Mixed Harmonics: $\langle \cos(\varphi_i \varphi_k) \cos(\varphi_j \varphi_k) \sin(\varphi_i \varphi_k) \sin(\varphi_j \varphi_k) \rangle = (v_1^2 a_1^2) v_2 + \dots$
 - A good candidate to measure charge sensitive flow since $v_1 \Rightarrow 0$ and hopefully v_{1_bkgd} (~in-plane bkgd) cancels a_{1_bkgd} (~out of plane bkgd), thus:

$$(\mathbf{v}_1^2 - \mathbf{a}_1^2) * \mathbf{v}_2 \quad \Rightarrow \quad -\mathbf{a}_1^2 * \mathbf{v}_2$$

– Should work well when v_1 is small and v_2 is large

Jim Thomas

(6) 17-Feb-23

a_1^2 and v_1^2 from the 200 GeV Au-Au Run 19

- The notation a_1^2 denotes the EbyE quantity $\Sigma (a_{1 p1}^* a_{1 p2})$ with p1 \neq p2
- a_1^2 is similar in shape and magnitude to v_1^2 , independent of which RP is used in the study
- a_1^2 shows charge separation ... but so does $v_1^2 \dots I$ didn't expect to see that

Jim Thomas

(7)

a_1^2 and v_1^2 from the 200 GeV Au-Au Run 19

Jim Thomas

The Chiral Magnetic Effect

(8) 17-Feb-23

$$v_1^2 - a_1^2$$
) with Ψ_{RP2} suggests that SS < 0, OS > 0

while $(v_1^2 - a_1^2)$ with Ψ_{RP1} is ~zero

Compare $<<a_1^2>>*<<v_2>>$ and $<<v_1^2>>*<<v_2>>$

- $<<a_1^2>>*<<v_2>>$ is similar in shape and magnitude to $<<v_1^2>>*<<v_2>>$ (note global avg)
- $<<a_1^2>>*<<v_2^>>$ shows charge separation ... but so does $<<v_1^2>>*<<v_2^>>$
- I didn't expect to see that ...

- Effect **Chiral Magnetic** The
- Jim Thomas

(9)

$(v_1^2 - a_1^2) * v_2$ using Ψ_{RP2} in 200 GeV Au-Au (Run 19)

- Note that (cos (φ_i + φ_i 2 φ_k)) was calculated on an EbyE basis, Σ (v₁²-a₁²)*v₂
- But, on this page, we are comparing it to $(\langle v_1^2 \rangle \langle a_1^2 \rangle) * \langle v_2 \rangle$
- The curves in the left and right figures are similar in shape and magnitude

Jim Thomas

(10) 17-Feb-23

•

Concluding thoughts

- << a_1^2 >> contains a significant amount of 'signal' (i.e. not small)
- <<v1²>> contains a significant amount of 'signal' (i.e. also, not small)
 <<v1²>> is full of signal and similar in shape and magnitude to <<a1²>>
- Both <<a₁²>> and <<v₁²>> show charge separation with OS > 0, SS < 0

 Not what we expected
- The difference between these two curves times <<v_2>> is small and similar in shape and magnitude to the γ correlator $(\Psi_{\rm RP2})$

- It could be the CME

- (<<v₁² a₁²>>) * <<v₂>> includes a global average for v₂ and not EbyE with the other terms, yet the product looks very similar to << (v₁² a₁²) * v₂>>
- The data are not fully consistent with the assumptions put forth at the start of the talk and so we may not be isolating a_{1CME} in the way we had hoped
- Bottom line: we are putting our faith in the subtraction of two large numbers to find a small signal. This could be a risky strategy when looking for new physics.

Jim Thomas

(11) 17-Feb-23

Technical notes

- The RPs were calculated using the TPC data, only.
- Centrality bins are preliminary, not the official Run 19 determination.
- The data for $\langle \cos(\phi_i + \phi_j 2 \phi_k) \rangle$ in the centrality bins 0-5% and 5-10% (pg 8) have been explicitly suppressed because they are expensive to calculate in a triple correlation. These are central events and we expect the result to be zero.
- Data taken from one run (~1.8 M Evts Run 19). This is a curse and a blessing: it makes the acceptance corrections stable but results could be a statistical fluke.
- Pion data, selected by 2σ cut on dE/dx band
- In principle, v₁ and a₁ should be measured wrt the 1st order reaction plane, v₂ should be measured wrt the 2nd order RP. If we take the1st order RP results seriously then the charge separation signal is zero. Would be good to do this again with a high quality measure of the 1st order RP such as the EPD
- It is computationally inefficient to calculate auto-correlations for a three particle correlation (especially when using TPC data). We could use independent 1st and/or 2nd order RP determination (e.g. the EPD) which would simplify the autocorrelation corrections. Food for thought and an obvious next step.

Jim Thomas (12)

Backup Slides

Jim Thomas

(13) 17-Feb-23

Analysis Uses Standard Flow Tools

Jim Thomas

The Chiral Magnetic Effect

(14) 17-Feb-23 • The line between the centers of the nuclei and the beam axis define the reaction plane – perpendicular to angular momentum vector and B field

Full Fourier Transform of the Invariant Yield

$$f(\phi) = \frac{b'_0}{2} + \sum_{n=1}^{\infty} (a'_n \sin(n\phi) + b'_n \cos(n\phi))$$

where

$$a'_{n} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(\phi) \sin(n\phi) \, d\phi \quad \text{for} \quad n = 1, 2, ...$$
$$b'_{n} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(\phi) \cos(n\phi) \, d\phi \quad \text{for} \quad n = 0, 1, 2, ...$$

If we want to test if parity is conserved then we should keep the extra terms

$$E\frac{dN^3}{d^3p} = \frac{1}{2\pi} \frac{d^2N}{p_T dp_T dy} \left(1 + \frac{2a_1 \sin(\Delta\phi) + 2b_1 \cos(\Delta\phi) + 2a_2 \sin(2\Delta\phi) + 2b_2 \cos(2\Delta\phi) + \dots\right)$$

where
$$a_n = \pi a'_n = \sum_i \sin(n(\phi_i - \Psi_R)), \qquad b_n = \pi b'_n = \sum_i \cos(n(\phi_i - \Psi_R))$$

Jim Thomas

The Chiral Magnetic Effect

(15) 17-Feb-23 The standard HI flow analysis assumes a = 0 and assigns $b_n \equiv v_n$

a_1^2 and v_1^2 from the 200 GeV Au-Au Run 19

- The notation a_1 Square denotes the EbyE quantity $\Sigma (a_{1_p1}^*a_{1_p2})$ with p1 \neq p2
- a_1^2 shows charge separation ... but so does $v_1^2 \dots I$ didn't expect to see that

The Chiral Magnetic Effect

Jim Thomas

(16) 17-Feb-23