

1

The STAR iTPC Upgrade – status and news

Jim Thomas, and a cast of thousands

March 15th, 2016

- Who
 - BNL, CTU Prague, Kent State, LBL, NPI Prague, SDU Shandong, SINAP Shanghai, UC Davis, UTA, USTC Hefei
- What
 - Upgrade the inner sectors of the STAR TPC to increase rapidity coverage and improve tracking and dE/dx at forward rapidities
- When
 - Proposed to BNL in 2011, presented to Tribble Committee in 2012
 - Funding to STAR this month (maybe), ready to take beam in March 2019
- Where
 - Key Science Institutions: BNL, Kent, LBL, UC Davis, USTC ...
 - Key Projects at BNL (electronics & installation), LBL (sector mechanics), SDU (MWPCs)
- Why
 - Beam Energy Scan in 2019/2020
- How
 - Make as few changes to the existing apparatus as possible because this is a high risk upgrade due to the limited time left in the schedule

Alex says I've been giving the same talk for 5 years. He is correct. If he starts snoring, just poke him gently to stop the noise but don't wake him up.

	Collision Energies (GeV):	7.7	9.1	11.5	14.5	19.6
	Chemical Potential (MeV):	420	370	315	260	205
	Observables	Ν	4illions o	f Events	Needeo	
	$R_{\rm CP}$ up to $p_{\rm T}$ 4.5 GeV	NA	NA	160	92	22
)	Local Parity Violation (CME)	50	50	50	50	50
	asHBT (proton-proton)	35	40	50	65	80
	Directed Flow studies (v_1)	50	75	100	150	200
)	net-proton kurtosis ($\kappa\sigma^2$)	80	100	150	200	300
	Elliptic Flow of ϕ meson (v_2)	100	150	200	300	400
)	Dileptons	100	160	230	300	400
	Proposed Event Goals:	100	160	230	300	400
	Projected Weeks with LEReC	14	9.5	5.0	2.5	3.0+

BESII: an NSAC endorsed milestone in the LRP

Jim Thomas

iTPC PID/acceptance needed for net-proton Kurtosis

- Net proton kurtosis expected to rise as the 4th power of acceptance if $\Delta y_{acc} < y_{corr}$
- Otherwise the growth is linear ... so our results are sensitive to correlation length
- Significant measurements at high y are possible due to decrease in error bars
 - AMPT simulations shown, significance of measurements wrt theory is important
 - Xiaofeng Luo and Misha Stephanov have made important contributions to the theory/experiment interface
 - <u>http://landau.phy.uic.edu/~misha/highmom-star/acceptance.pdf</u>

- Systematic study of di-electron continuum from $\sqrt{S_{NN}}$ = 7.7 19.6 GeV
 - Vector meson suppression due to (possible) Chiral symmetry restoration
- Inner Time Projection Chamber (iTPC) upgrade: reduce systematic error of the background (important), and improves acceptance for signal at 0.4 < M_{ee} < 0.7
- Distinguish models with different ρ-meson broadening mechanisms (e.g. Rapp's method vs. PHSD)
- Study the total baryon density effect on LMR excess ... projected error bars shown

.....

BERKELEY LAB

Recent Reviews and Publications

iTPC Short Summary

- https://drupal.star.bnl.gov/STAR/system/file s/Summary_September14th_iTPC_final.pdf
- iTPC Proposal and CDR
 - STAR Note SN0629
 - https://drupal.star.bnl.gov/STAR/starnotes/ public/sn0619
- Technical Design Report
 - STAR Note SN0644
 - https://drupal.star.bnl.gov/STAR/starnotes/ public/sn0644
- Cost and Schedule review
 - https://indico.bnl.gov/conferenceDisplay.py
 ?confld=1711

iTPC directors review

Monday, January 25, 2016 from $09{:}30$ to $18{:}00$ (US/Eastern) at $Physics \left(\ 3{-}191 \right)$

Description The review of the iTPC technical proposal, cost & schedule and risks/ The meeting is also on SeeVogh with the information given here:

meeting in SeeVogh Research Network (http://research.seevogh.com).

Title: iTPC review Description: STAR iTPC BNL/DOE review Community: STAR Meeting type: Open Meeting (Round Table)

 Meeting Access Information:
 SeeVoghRN Application
 http://research.seevogh.com/joinSRN?meeting=M9MIMi222tDDD29D9iDD99

 Mobile App:
 Meeting ID: 742 8055
 or Link: http://research.seevogh.com/join?meeting=M9MIMi222tDDD29D9iDD99

- Phone Bridge ID: 742 8065

Phone access: BL 631-344-6100

Material Slides 🗋 document 🛃 🕶

Monday, January 25, 2016

```
09:30 - 10:00
              executive session 30'
10:00 - 10:20
              Overview 20'
               itpc and STAR BES-II
               Speaker: Dr. Zhangbu Xu (BNL)
               Material: Slides 🗐
10:20 - 10:40
              Project introduction 20'
               Speaker: Flemming Videbaek (BNL)
               Material: Slides 🗐
10:40 - 11:10
              Sector design and construction 30'
               Speaker: Jim Thomas (LBL)
               Material: Slides 📆
11.10 - 11.40
              MWPC 30'
               Speaker: Qinghua Xu (SDU)
               Material: Slides 📆
11:40 - 12:10
              Electronics 30'
               Speaker: Dr. Tonko Ljubicic (BNL)
               Material: Slides 📆
12:10 - 12:30
              Insertion Tooling and Installation 20'
               Speaker: Rahul Sharma (BNL)
               Material: Slides 📆
12:30 - 13:00
              Cost , Schedule and Risk 30'
               Speaker: Flemming Videbaek (BNL)
```

Material: Slides 🗐

The STAR Detector at RHIC

Sector Insertion – special tools required \Rightarrow BNL

Goal: Hermetic coverage & better acceptance

- Currently, the outer pad plane is hermetic while the inner pad plane is not
 - Goal: Add more pad rows on the inner sector, 2X total pad count

BERKELEY LAB

The upgrade will provide better momentum resolution, better dE/dx resolution, and improved acceptance at high η

New Pad Plane design and layout

A corner of the new inner pad plane layout

by John Hammond & Bob Scheetz

▲ 1.0 < hpl < 1.5

● hpl < 0.5</p>

dev**TA**

0.670*2.0

32 rows

2162

■ 0.5 < hpl < 1.0

devTB

0.670*1.60

40 rows

2572

0.017

0.015

0.013

0.011

0.009

0.006

0.005

0.004

م 0.007

New PadPlane Performance

- Efficiency as a function of η and p_T
- Acceptance increases from |η| < 1 to |η| < 1.5

The pad response function for the outer sector is shown by the black line, the existing inner sector by the blue line, and the proposed inner sector by the red line. The pad spacing is 6.7 mm, 3.35 mm, and 5 mm respectively.

Jim Thomas

Project Scope: Mechanics, Electronics & MWPCs

BERKELEY LAB

Wire Mounts for Grids

Wire Planes: Gated Grind, Cathode Grid, and Ground Grid

Pad Plane with larger (5x16) pads, hermetic coverage

Strongback

Outer Sector, but a good proxy for Inner Sector discussion

1-1 12014+2

REVA

105880000

Major Mechanical Tasks

Wire Mounts (BNL & LBL) Wind wire grids (SDU, see Qinghua Xu's talk) Fabricate, QA check Align (50 μm) Glue (< 20 μm flat) & Trim padplane (BNL & LBL) (See Tonko Liubicic's talk)

Fabricate, Align and Pin

Fabricate strongback & inspect (QA) (Outside vendor)

Cut to height, machine O Ring groove, Survey padplane & Document mech. specs (LBL)

Cost Drivers

- Padplane & Electronics (BNL)
 - \$96.4K for Padplanes
 - \$1.4 M (approximately) for DAQ boards & electronics
- Strongback (Outside vendor, BNL procurement)
 - \$418.9 K
 - Two preliminary vendor quotes & initial experience at UT Austin
- Assembly of Padplane & Strongbacks (LBL)
 - **\$551.8 k**
 - Berkeley is the preferred location for the gluing of the PadPlane, and assembly of the Strongback and Wire Mounts
 - Close proximity to Engineers and Technicians who previously worked on STAR (circa 1995)
 - Nicely integrated Assembly shop, Machine Shop & Survey shop

We are proposing to bring the Assembly work to LBL (primarily work for Eric Anderssen's group in B77) This will need active support from NSD in order to succeed

- Strongback
 - We must go to an outside vendor with multiple machines in order to fabricate the strongbacks
 - UT Austin is no longer an option
 - 6 to 8 weeks (.vs. 1 year), preliminary quotes from outside vendors
- Padplane
 - Work is being done by STAR Electronics group which is one of the projects greatest strengths. However, sharing the wealth of good manpower is a competitive process. Work has been delayed. (Affects QA and prototyping schedules)
- Assembly
 - Schedule is fast paced, only ~2 days allowed per sector
 - Tooling and time to set up work space
- Critical Path
 - The PadPlane and the Strongback are simultaneously on the critical path
 - Both must be available in Berkeley on August 1st
 - Berkeley assembly shops are busy with ALICE upgrade work, already
 - Only way to deal with this is to start early and Multi-task

MWPC Production at Shandong University

- Qinghua Xu is leading the Shandong University group
- iTPC Funded via CNSF & dedicated Labs built
- ~2 years technical work and lab preparation getting ready for this project
- One of the highlights of the iTPC team development

Calendar Year		20)16			20)17			20)18			20)19	
	Q1	Q2	Q3	Q4												
Mechanical																
padplane																
Strongback production																
Padplane Assembly																
Assemble MWPC																
Sector Installation																
Electronics																
RDO																
SAMPA																
FEE																
Electronics installation																
Roll-in and commisioning																
Insertion Tool																

Current schedule has STAR ready for data taking March 1 2019, with ~1.5 month of commissioning. Key goal of project is to have upgrade complete for Run-19.

Critical path goes through electronics path (SAMPA chips), installation and test, but the mechanical systems are essentially on the critical path, too.

WBS		FY16	FY17	FY18	Conting	Total
1	Mgt	50.6	94.5	97.4	45.5	288.0
2	Padplane	96.4	0.0	0.0	32.8	129.2
3	Mechanics	949.9	228.0	14.8	250.3	1,443.0
4	Installation	0.0	0.0	136.4	. 31.2	167.6
5	Electronics	45.7	310.3	934.3	238.4	1,528.6
	Total DOE	1,142.6	632.8	1,182.8	598.1	3,556.4

Ayk\$

The NSF-China contribution is not included (~\$1.0 M US) The cost of Installation tooling not included (~\$650 K US)

- Technical
 - Better than 20 μm flatness requirement for PadPlane+Strongback
 - Excellent alignment of wires and padplane (20 μ m), excellent control over tension on wires
 - Bromine free materials
 - A vigorous QA plan is essential
 - We have the elements of a good QA plan in place but we also need the will to stick to it
- Schedule
 - We are relying upon the ALICE SAMPA chip for the iTPC electronics
 - Pre-production prototype step for Strongbacks (etc) is in jeopardy
 - Schedule is tight and so we may be forced to skip traditional steps
 - Minor schedule slips can easily eliminate the opportunity to develop tooling and practice our techniques on a prototype
- Management
 - Major activities must complete this year, requires \$\$\$ quickly
 - For example, we haven't spent any money this fiscal year

Summary

- The iTPC upgrade will enable new physics with BES II
 - Enhanced Kurtosis measurements
 - Enhanced Di-electron measurements
- New PadPlane & Faster electronics
 - 40 pad rows, 5 mm x 16 mm pads (center to center spacing), full coverage
 - Increase TPC acceptance from < 1.0 to < 1.5 units of pseudo-rapidity</p>
- Strongback is 95% the same as before
 - Fix the grid-leak problem
- Cost and Schedule concerns
 - Very tight schedule. No float.
 - We are skipping the "prototype" step for nearly all work in the US
 - Final PadPlane, Strongbacks & wire mounts due in Berkeley on August 1st
 - Money must move from BNL to LBL very quickly, can it be done?
 - Spending large amounts of money wisely is hard to do

An upgraded TPC with \$500K of new work for NSD and Engineering

Backup Slides

The TPC is the Heart of STAR

• STAR without the TPC

Mean, Variance, Skewness and Kurtosis

Anode wires spaced 4 mm apart (horizontally), Ground Shield and Gated grids spaced 1 mm apart

• Identical pad response function on both ends of grid

.....

BERKELEY LAP

- No need to change grid; wire locations remain the same!
- No need to add more ABDB or wire mount channels (good!)

Changes since previous (1995) design

- 3D CAD design (lower fabrication & inspection costs)
- Slots for electronics move down by 0.221"
- Wall to mitigate gridleak problem ullet

GARFIELD simulations of ions flowing away from the STAR TPC anode wires when the Gated Grid is closed. There is a 1.2 cm gap between the Inner and Outer sectors that is not covered by the Gated Grids. This gap allows ions to flow out of the MWPC region and into the tracking volume of the TPC. Putting a -690 volt bias (left panels) on the wall reduces the flow of ions, while the "L" shaped wall (right panels) completely stops the flow of ions. The "L" shaped wall was held at 0 volts in this simulation. Jim Thomas 26

The Alice Solution to the Grid Leak problem

- Multiple thick anode wires near the boundaries of the sectors
- A wall to terminate the field lines from the Anode wires with ground potential and "cover" potential (match field gradient)

Item	Inner	Outer	iTPC	Comment
Pad Pitch (center to center)	3.35 x 12	6.70 x 20	5.0 x 16	mm
Isolation gap between pads	0.5	0.5	0.5	mm
Pad Size	2.85 x 11.5	6.20 x 19.5	4.5 x 15.5	mm
Number of Pads	1750	3940	3496	
Anode to pad plane spacing	2	4	2	mm
Anode voltage	1170 V	1390 V	~ 1120 V	20:1 S/N
Anode Gas Gain	3770	1230	~ 2000	nominal
Anode Wire diameter	20 µm	20 µm	20 µm	Au plated W
Anode Wire pitch	4	4	4	mm
Anode Wires phase locked to pad	3 wires, #2	5 wires, #3	4 wires,	grp centered
location	over center	over center	over center	over the pad

Pad Plane & wire planes must be flat to better than 20 μ m to keep dE/dx resolution uniform to 1%

Wire	Diam. (µm)	Pitch (mm)	Composition	Tension (N)
Anodes	20	4	Au-plated W	0.50
Anodes— last wire	125	4	Au-plated Be-Cu	0.50
Ground plane	75	1	Au-plated Be-Cu	1.20
Gating grid	75	1	Au-plated Be-Cu	1.20

Strongback Construction Prototype

Figure 54: A prototype inner sector strongback is shown during fabrication at the University of Texas (circa 2013). The sector was machined out of a single piece of aluminum. Dimensions are: ~27 inches tall, ~25 inches wide and weight 73 lbs. The sector is viewed from the backside; the side upon which the electronics and cooling manifolds will eventually be mounted.

Wire locations near the gap will not change

- The location of the wires near the inner/outer gap cannot change
 - Position and total number of wires on each plane remains the same
- Because ... it is not possible to add more wires
 - The full extent of the side mounted wire mounts are already used

30

Sector Wire Geometry – special notes

.....

BERKELEY LAB

Wires are phase locked to the pad locations. 4 wires located over each pad row. We can probably tolerate a phase shift of 100 microns.

Ground wires placed directly over the Anode wires to limit sparking to pad plane.

Inner sector detail

BERKELEY LAB

32

Inner / Outer sector detail

.....

BERKELEY LAB

IIII

- Note that inner and outer pad planes are not at the same height
- Pad plane to wire grid heights not the same (4/4/6 vs 2/2/6)
- 3 mm gap between sectors, this is an issue during installation

Location of Wires and Pads

Radius (Y)	Description	GATED GRID WIRE References
0.00	Center of STAR Detector (vtx)	G AZEmm Backy Av plated
498.80	Bottom of Full size PC Board	2.075mm Becu , Au plated
512.70	Tertiary Fiducial L & R	spacing 1mm 24A055,
519.05	Strongback Bottom Edge	OUTER : 689 Wires 24A373,
530.00	Gated Grid Wire 1	INNER : 681 Wires 24 4 374
531.00	Gated Grid Wire 2	TOTAL: 1,370 Wires per Sector
532.00	Anode Wire 1 & GG W-3	
536.00	Anode Wire 2 & GG W-7	SHIELD GRID WIRE
540.00	Anode Wire 3 & GG W-11	Ø.075mm BeCu ,Au plated
540.25	Secondary Fiducial	spacing 1mm
544.00	Anode Wire 4 & GG W-15	OUTER : 689 Wires
548.00	Anode Wire 5 & GG W-19	INNED : 691 Wiros
558.00	Pad Row 1 - Center	
574.00	Pad Row 2 - Center Repeat pad rows every	IOTAL: 1,370 Wires per Sector
1166.00	Pad Row 39 - Center 16 mm	ANODE GRID WIRE
1179.45	Primary Fiducial	Ø.020mm W. Au plated
1182.00	Pad Row 40 - Center	spacing Amm
1192.00	Anode Wire 166 & GG W-663	
1196.00	Anode Wire 167 & GG W-667	OUTER : 170 Wires
1200.00	Anode Wire 168 & GG W-671	INNER: 164 Wires (168 in old design)
1204.00	Anode Wire 169 & GG W-675	TO TAL: 334 Wires per Sector (338 in old design)
1204.85	Alternate Primary Fiducial	
1208.00	Anode Wire 170 & GG W-679	LAST ANODE WIRE
1209.00	Gated Grid Wire 680	Ø.125mm BeCu , Au plated
1210.00	Gated Grid Wire 681	OUTER : 2 Wires
1214.32	Strongback Top Edge	INNER: 6 Wires (2 in old design)
1220.67	Tertiary Fiducial L & R	TOTAL 8 Wires per Sector (4 in old design)
1235.42	Top of Full size PC Board	TO TAE. 0 WITES PET Sector (4 III old design)

Wire Locations are the same as before except for the replacement of 6 thin anode wires with larger diameter anode wires (0.020 mm \Rightarrow 0.125 mm)

Strongback – Preliminary quotation #1

	SILICON PRECI	VALLEY SION	Sili	con Valley 5625 Bris Livermore Phone: 92 Fax: 925	Precision a St, Ste G , CA 94550 5-373-8259 -373-6025	ı, Inc		
				Quot	tation			
	Berkeley, C United Sta	CA 94720 tes						
Γ	Quote Number:	50158			Contact:	Katherine Ra	ay]
	Quote Number: Quote Date:	50158 12/05/14	Expires:	01/04/15	Contact: Inquiry:	Katherine Ra	ау	
	Quote Number: Quote Date: Customer:	50158 12/05/14 LBNL	Expires:	01/04/15	Contact: Inquiry: Terms:	Katherine Ra	ау	
	Quote Number: Quote Date: Customer: Salesman:	50158 12/05/14 LBNL House	Expires:	01/04/15	Contact: Inquiry: Terms: Phone:	Katherine Ra Net 30 Days (510) 486-54	ay 115	
	Quote Number: Quote Date: Customer: Salesman: Ship Via:	50158 12/05/14 LBNL House	Expires:	01/04/15	Contact: Inquiry: Terms: Phone: FAX: Delivery:	Katherine Ra Net 30 Days (510) 486-54 Standard Lea	ay 115 adtime: 6-8 weeks	
Π	Quote Number: Quote Date: Customer: Salesman: Ship Via: hank you for the op	50158 12/05/14 LBNL House	Expires: this quote.	01/04/15	Contact: Inquiry: Terms: Phone: FAX: Delivery:	Katherine Ra Net 30 Days (510) 486-54 Standard Lea	ay 115 adtime: 6-8 weeks	
TT	Quote Number: Quote Date: Customer: Salesman: Ship Via: hank you for the op tuote includes mate	50158 12/05/14 LBNL House	Expires: this quote. ess relieving, g	01/04/15	Contact: Inquiry: Terms: Phone: FAX: Delivery: ection.	Katherine Ra Net 30 Days (510) 486-54 Standard Lea	ay 115 adtime: 6-8 weeks	
TT Q	Quote Number: Quote Date: Customer: Salesman: Ship Via: hank you for the op quote includes mate	50158 12/05/14 LBNL House portunity to submit erial, machining, streeting up parts as ther	Expires: this quote. ess relieving, gr e are no 2D or	01/04/15 rinding & inspe 3D models.	Contact: Inquiry: Terms: Phone: FAX: Delivery: ection.	Katherine Ra Net 30 Days (510) 486-54 Standard Lea	ay 115 adtime: 6-8 weeks	
	Quote Number: Quote Date: Customer: Salesman: Ship Via: hank you for the op Quote includes mate quote includes draw	50158 12/05/14 LBNL House portunity to submit trial, machining, stre- ing up parts as ther tion of 3 parts and 2	Expires: this quote. ess relieving, gi re are no 2D or 20% inspectior	01/04/15 rinding & inspe 3D models. n of qty 12 & 2-	Contact: Inquiry: Terms: Phone: FAX: Delivery: ection.	Katherine Ra Net 30 Days (510) 486-54 Standard Lea	ay 115 adtime: 6-8 weeks	9
	Quote Number: Quote Date: Customer: Salesman: Ship Via: hank you for the op tuote includes mate tuote includes draw tuoted 100% inspect	50158 12/05/14 LBNL House portunity to submit erial, machining, street ing up parts as ther ction of 3 parts and 2	Expires: this quote. ess relieving, gr re are no 2D or 20% inspectior	01/04/15 rinding & inspe 3D models. n of qty 12 & 24	Contact: Inquiry: Terms: Phone: FAX: Delivery: ection.	Katherine Ra Net 30 Days (510) 486-54 Standard Lea	ay 115 adtime: 6-8 weeks	
	Quote Number: Quote Date: Customer: Salesman: Ship Via: hank you for the op tuote includes mate tuote includes draw tuoted 100% inspect <u>Part Number</u> <u>Description</u>	50158 12/05/14 LBNL House portunity to submit rial, machining, stre- ing up parts as ther ction of 3 parts and 2	Expires: this quote. ess relieving, gr re are no 2D or 20% inspectior	01/04/15 rinding & inspe 3D models. n of qty 12 & 24	Contact: Inquiry: Terms: Phone: FAX: Delivery: ection.	Katherine Ra Net 30 Days (510) 486-54 Standard Lea	ay 115 adtime: 6-8 weeks	Price
1 1 1	Quote Number: Quote Date: Customer: Salesman: Ship Via: hank you for the op tuote includes mate tuote includes draw tuoted 100% inspect Part Number Description 24A368 Inner Sector Stro	50158 12/05/14 LBNL House portunity to submit erial, machining, street ing up parts as ther ction of 3 parts and 2 ungback	Expires: this quote. ess relieving, gi re are no 2D or 20% inspectior	01/04/15 rinding & inspe 3D models. n of qty 12 & 24	Contact: Inquiry: Terms: Phone: FAX: Delivery: ection.	Katherine Ra Net 30 Days (510) 486-54 Standard Lea Standard Lea <u>Revision</u> D	ay 115 adtime: 6-8 weeks <u>Quantity</u> 3	<u>Price</u> \$11,203.00 /EA

Strongback – Preliminary quotation #2

IMT Precision, Inc. Machining, Sheet Metal Fabrication, Inspection & Assembly	IMT Precision, Inc. 31902 Hayman Street Hayward, CA 94544	Ph: (510) 324-8926 Fax: (510) 324-8943		
	Quote			
ISO 9001:2008 REGISTERED FIRM	Quote To			
Lawrence Berkeley National Lab FOR THE US DEPT. OF ENERGY One Cyclotron Road, BLDG. 69 Berkeley, CA 94720	KATHERINE RAY UC Lawrence Berkeley Lab FOR THE US DEPT. OF ENERGY One Cyclotron Road, BLDG. 69 Berkeley, CA 94720			

éms		Ship Via		Salesperson
let 30 days		IMT Transport	JEFF N	
Quantity	Description		Unit Price	Amount
	Line: 001 Part: 24A3685 INNER SECTOR STRONGBACK	Expiration Date: 02-Feb-15 Rev: D		
3	ea		\$3,887.50	\$11,662.50
12	ea		\$3,172.00	\$38,064.00
24	ea		\$2,995.00	\$71,880.00
	INSPECTIO 100% ON 20% ON QU *** LEAD TIME: 4 WEEKS THANK YOU FOR THE OPPORTUNITY TO HAVE ANY QUESTIONS. NOTE: THIS QUOTE DOES NOT INCLUDE INSPECTION REPORTS UNLESS REQUES	IN REPORT INCLUDED: QUANTITY 3 PIECES ANTITY 12 & 24 PIECES 5 (20 FULL WORKING DAYS) ARO.*** QUOTE. PLEASE CONTACT US SHOULD YOU MATERIAL CERTS OR FIRST ARTICLE TED.		

Critical Dimensions for the TPC

Item	Dimension	Comment
Length of the TPC	420 cm	Two halves, 210 cm long
Outer Diameter of the drift volume	400 cm	200 cm radius
Inner Diameter of the drift volume	100 cm	50 cm radius
Distance: cathode to ground plane	209.3 cm	Each side
Cathode	400 cm diameter	At the center of the TPC
Cathode potential	28 kV	typical
Drift gas	P10: 90% Ar, 10% CH ₄	He-Ethane as an option
Drift Velocity	5.45 cm/µsec	typical
Transverse diffusion (σ)	230 μm/√cm	135 V/cm & 0.5 T
Longitudinal diffusion (σ)	360 μm/√cm	135 V/cm & 0.5 T
Magnetic Field	0, ±0.25 T, ±0.5 T	Solenoidal

Weight of TPC (lb.)							
Item	Max LBNL	Max BNL	Installed Wt.	Installed Wt.	Basis		
		Lift	w/ CTB	w/ TOF			
IFC	107	107	107	107	close est		
OFC	4991	4991	4991	4991	close est		
Wheel	3100	3100	3100	3100	measured		
Wheel Brkts/Adj	227	227	227	227	rough est		
TOF rails	1080	1080	1080	1080	exact		
Outer Sectors	2520	2520	2520	2520	measured		
Inner Sectors	1752	1752	1752	1752	close est 75# ea,		
Gas Manifolds at wheel	0	0	200	200	removed for lift		
FEE	128	1539	1539	1539	measured		
FEE Manifolds	480	480	480	480	rough		
RDO	51	607	607	607	close est.		
RDO manifolds	15	360	360	360	rough		
RDO/FEE Cable	39	468	468	468	close est		
Dist Manif/hose	240	390	390	390	rough		
CTB modules (120 ea.)	0	6 60	3960	0	measured/ 33# ea.		
TOF modules (120 ea.)	0	0	0	4800	Est, G.Mutchler 9/98		
TOF cables/hose	0	0	240	240	rough		
RDO elect. brkts	24	24	24	24	rough		
SVT, Cone Assy &SSD	0	0	365	365	Mech Des Rev 3/98		
FTPC	0	0	809	809	FDR action item 1		
TOTAL	14753	18304	22409	23249			

FEE	3.60 %
FEE mounting bracket	3.45 %
FEE rib	0.45 %
FEE socket	0.15 %
Cooling manifold	3.25 %
RDO card	0.90 %
Ribs	2.70 %
Sector G10	0.45 %
Sector Aluminum	3.20 %
Cables	~1% (estimate)
FEE sub Total	7.65%
Total	19.15%

Table 6: The *average* radiation length budget for the components associated with a TPC inner sector (circa 1993) averaged over the fiducial volume of the sector. The average takes out the lumps in the mass distribution (for better or worse) but also illustrates how the budget for the Al on the front face compares to the electronics and cooling budget. The sector data have been averaged over a range from $1.5 < \eta < 2.0$ and $-10 < \phi < 10$ degrees. Geant simulations courtesy of Irakli Chakaberia.

