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An analytical calculation of the variance is performed, in some simple cases, for standard least-squares estimators of track 
parameters (accounting for independent measurement errors only); comparison is made with optimal estimators (accounting also for 
scattering errors, correlated between one point and the following ones). A new method is proposed for optimal estimation: the points 
measured on the track are included backwards, one by one, in the fitting algorithm, and the scattering is handled locally at each step. 
The feasibility of the method is shown on real events, for which the geometrical resolution is improved. The algorithm is very flexible 
and allows fast programmation; moreover the computation time is merely proportional to the number of measured points, contrary to 
the other optimal estimators. 

1. Introduction 

Charged particles going through matter  are affected by r andom deviations due to multiple scattering. 
The uncertainty on their initial fitted parameters  (posit ion and m o m e n t u m  components)  arises f rom two 
contr ibutions:  on the one hand  the contr ibut ion of  the measurement  errors, which is a decreasing function 
of  the number  of  measured points;  on the other  hand  the contr ibut ion of  the multiple scattering errors, 
which cannot  be reduced below some min imum values, because the detectors contain at least a gas at 
a tmospheric  pressure, and some denser parts. These scattering uncertainties become predominant  for low 
m o m e n t u m  particles, or for very accurate measurements.  

There are essentially two ways to per form a geometrical  track fit when the scattering errors are not  
negligible: 

1) A standard fit takes only the measurement  errors into account,  and provides estimators for the track 
parameters  and their covariance matrix (as resulting f rom the measurement  errors only). Such estimators 
are not  opt imal  (some informat ion is lost). Their actual covariance matrix can be obtained by adding 
afterwards the multiple scattering contribution.  

2) An optimal fit makes use of  the full (n x n)  covariance matrix of  the n measurements  (including 
multiple scattering, i.e. correlat ion terms). This is usually realized by using the G a u s s - M a r k o w  theorem, 
and needs then the inversion of  this matrix [1]; other  methods  in t roduce extra parameters  to describe the 
scattering angles [1]. 

The precision of  the estimators corresponding to bo th  methods has already been compared  by Drijard 
[2] by  numerical  evaluation, for the curvature and angle parametes  only. In  this paper  we give analytical 
expressions of  the covariance matrices, and we consider also posit ion parameters,  because the kinematical  
resolution depends  on the precision of  these parameters  when the tracks are extrapolated to a vertex. 
Moreover,  it is necessary to calculate correctly the covariance matrix of  the parameters  (accounting for 
multiple scattering) in order  to use the X 2 as a goodness-of-fi t  criterion in a subsequent vertex fit or  
kinematical  analysis, or to detect another  source of  errors. 

In  sect. 2 we calculate the matrices resulting f rom the s tandard method in some simple cases, and we 
show that an increase of  the number  of  measured points  may  lead to an increasing error in the parameters;  
in sect. 3 we describe a recursive solution of  the opt imal  method,  hopeful ly less expensive than the 
brute-force matrix inversion involved in the G a u s s - M a r k o v  method;  in sect. 4 we determine recursively the 
opt imal  covariance matrix of  the parameters  in the same cases as in sect. 2 in order to evaluate the gain in 
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precision. In sect. 5 we present results obtained with real events from the OMEGA spectrometer at CERN. 
Let us recall the expression of the variance of the projected scattering angle for a particle of charge Z, 

velocity v, momentum p, after passing through ~ radiation lengths: 

\ p v  ] 

where K is about 15 MeV (with a correcting factor at low velocities). 
The main point for our purpose is that for a given particle with a given momentum, Aa z is proportional 

to ~. 

2. The standard fit: evaluation of the error matrix 

2.1. General conventions 

We suppose that all measured points on the track are equidistant (interval 1), with the same precision, 
and that their number n is large enough to replace the summations over the points by integrations (or, 
equivalently, to hold only the terms of highest degree in n). 

We consider slightly curved tracks in an uniform vertical magnetic field, so that they have a straight 
vertical projection, and their horizontal circular projection can be handled as a parabola in order to 
perform easier analytical calculations. These conditions are often realistic, and our conclusions will hold 
qualitatively in more general cases. The calculation could be extended to various t rack/detector  configura- 
tions. 

2.2. Scattering at one point of the track 

We suppose that the particle encounters matter concentrated at a distance L 0 after the first measured 
point. Let n o = Lol l  be the number of points before L o, and Aa 2= (KZ/pv)2~ the variance of the 
scattering angle a in both vertical and horizontal directions, a is a quasi-Gaussian variable, independent of 
the measurement errors. 

At n fixed abscissas x i = il, the coordinate y is measured in the horizontal plane with precision o h and z 
in the vertical plane with precision 0 v. Their deviations from the theoretical ones (which would be obtained 
without errors and scattering) are illustrated in fig. 1. 

measured 
points  

Lo > ~," "-.. "-. t ra jec tory  

" ~ f i f t e d  
t r a j e t  to ry  

r 

Fig.'1. Deviations of the measured coordinates from the theoretical trajectory. 
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The vertical projection is then parametrized by z = Z + bx and the horizontal one by y = Y + ax + c x : / 2  

(with c = 1 / R  when the track has a direction close to x axis). The parameters to be fitted are, in the first 
case, Z and b, and their variances can be calculated [4] as functions of a, ~ = n / n  o and p2 = ni~j2ka2/o2 

_4 2 
°2-n°,.[l+(rl-1)~4O,214B3 

=--~- -~- 1 +  
12T/3 

In the second case, the variances of the parameters Y, a, c are: 

o2=9o211+ (2r/ -- 5)2(~ -- 1)402 } 3 6 7 / 5  

off = - ~  ( -~ )2 [  1 +  ('rl- 3)3('0 + 5)2(I/- 1 ) 4 1 9 2 ~  s Oh2] 

0, 2 = T ~ S  ! 1 + - - -  02 
4~ 5 

In these expressions the first term represents the well known contributions of the measurement errors. 
In order to show how the errors on the parameters depends on the measured length (i.e. the number of 

points), figs. 2 and 3 (solid curves) represent the square roots of the variances (in normalized units) as 
function of n / n  o for various values of 0: this quantity expresses the relative importance of the scattering 
errors for a given track/detector configuration; under usual experimental conditions, it can be much 
greater than 1 for particles with momentum around 1 GeV/c. 

These curves often have an absolute minimum (and sometimes also a secondary minimum): so we are 
led to the notion of optimal measurement length: using points beyond this length worsens the precision of 
the estimator. Unfortunately the optimal length is generally not the same for all parameters;:in many cases 
the best precision for the curvature is obtained by using all measurements. 

It is important to note that the mean squared residual r 2 is not affected in the same way by the 
scattering errors: one finds, for large n: 

[1 + (n - 1)___3 02 in the vertical d Ov plane [ 3714 no 

r~ - - -o~[ l+  (~-1)3(4~/~_  -12~ 615~+15)  02 ] n0]  in the horizontal plane. 

So the relative increase of the residuals due to the multiple scattering is generally much smaller that the 
increase of the variances of the fitted parameters. This implies that the X 2 criterion applied to the residuals 
fails to indicate whether the standard estimator is reliable in spite of the scattering. 

When the particles encounter several slices of matter inside the measurement range, the successive 
scattering angles are independent: so the variances and the mean squared residuals can be calculated by 
adding the contribution of each slice. 

2.3. Scattering uniformly distributed along the track 

This approximation is exact for bubble chambers and realistic for many detectors. The variance of the 
parameters and the mean squared residuals are deduced from the formulae found in 2.2, with an 
integration over L 0 (as above, the number n of measurement points is assumed to be large enough to allow 
this approximation). 
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We call 8a  2 the variance of the scattering angle between two successive points (i.e. over a length l); the 
dimensionless quantity q = lra/o plays a role analogous to that of  p in 2.2. One finds: 

°2=4°2(ln_~ I n  + 4~n4q2) 42) / 
gl+  nthoverti a,p,aoo. 

a b ~- ~ n  qv 
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Fig. 2. Errors on the track parameters (position and slope at first point, and eventually curvature) as functions of the measured length 
for both standard and optimal estimators: straight track, scattered at one point. 
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Fig. 3. Errors on the track parameters, as in fig. 2 but for: curved track, scattered at onepoinr. 
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Fig. 4. Errors on the track parameters,  as in fig. 2 but  for: straight track with uniformly distributed scattering. 

Fig. 5. Errors on  the track parameters,  as in fig. 2 but  for: curved track with uniformly distributed scattering. 

__ 1 _4_2 9 o~(1 + s-Z~n qh) 0 " 2 ~  n 

o ~ =  -~- (1 +~-~n qh ) 
in the horizontal  plane. 

o 2 = ~ - ( ° h  ]2( l+5-~n4q2 ) F/ 
r ~ = o ~ ( 1 - '  ~2 + ~-6n qh ) 

The dependence of  ~z_, o b, o r . . . .  on n (with l fixed) is shown in figs. 4 and 5: the errors have a 
min imum (at n = 3 .2 /~qv  for o z and o b, at n = 6 . 8 / q ~ h  for o v and %) excepted %, which decreases to 
zero. As a conclusion no opt imal  length can be found to minimize the errors on all parameters  
simultaneously. 

Here again the residuals are generally much  less affected by the multiple scattering than the errors on 
the parameters  (as a matter  of  fact, r 2 increases a s  n 3 instead of  n 4 for the variances); in most  cases they 
reflect the measurement  errors only. 

3. T h e  opt imal  fit: recurs ive  m e t h o d  

3.1. Description of  the method 

3.1.1. General features 
The track is measured at abscissas x 1, x z . . .  x N. Knowing  the best estimators of  the track parameters  at 
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x,,, s tar t ing from the measurements  at x . ,  x,,+~ . . . .  xx, we want  to def ine the best es t imators  of the 
pa rame te r s  at x~_~ s tar t ing f rom the measurement s  at x . . .  ~, x,,, . . .  x x. Here we have to do  with the true 
parameters , i .e ,  inc luding the effect of the previous  scatterings.  

This involves: 

- scat ter ing between x . _  ~ and x . ,  that  is, loss of in fo rmat ion  with respect  to the s imple ex t rapo la t ion  of 
the pa rame te r s  and  of their  covar iance  matrix.  

- ext ra  in fo rma t ion  thanks  to the x n._ ~ measurement .  
We  suppose  the d i s tance  6x .  between x,, ~ and  x .  to be short ,  so that  the scat ter ing affects the angles 

bu t  not  the pos i t ion:  in o ther  words  we can cons ider  that  the ma t t e r  is concen t ra t ed  at the measurement  
points ,  and  that  the t rack  can be ass imi la ted  to a b roken  line; anyway,  one can in t roduce  in te rmedia te  
scat ter ing po in ts  where no measuremen t  is made.  This  a s sumpt ion  s implif ies  the calculat ions,  but  it is not 
essential  to the method.  

W e  will first descr ibe  this (backward)  recursive es t ima tor  for t racks in a plane,  pa ramet r i z ing  each 
e l emen ta ry  segment  as a po r t ion  of  p a r a b o l a  (with the same no ta t ions  as in sect. 2). 

3.1.2. Accounting for  the scattering 
Let yt ,  a t  and  ct. be the true values of  the pa rame te r s  at x . ,  after scat ter ing;  the true values at this po in t  

vopt opt t + a .  and  ct., where a .  is a quas i -Gauss i an  var iable  of var iance 3a] .  Let ~n , a~ before scat ter ing are  yt ,  a .  
t and  t in terms of  ym,  y .  + ~ YN (measured  coord ina tes  at xn, and  c .  opt be the bes t  es t imators  of  yt ,  a .  c.  m . . .  rn 

x.+~ . . .  x N) and V. their  covar iance  matr ix.  These es t imators ,  as r a n d o m  variables ,  are clearly indepen-  
den t  of  a . .  Then  they are  also the best  es t imators  of.v t ,  a t  + a and  ct., with a covar iance  matr ix  V.* equal  to 

V. where  3a~ z has been  a d d e d  to the V.. term. 
t it is also efficient  for opt is an eff icient  e s t ima tor  of  a . ,  In  the f r amework  of in fo rma t ion  theory:  if a .  

t +Otn" a n  

3.1.3. Propagating to the previous point 
The t r ans fo rma t ion  f rom the pa rame te r s  at x ,  (before  scat ter ing)  to those at x n ~ (af ter  scat ter ing)  is 

one- to-one ,  wi thout  in fo rma t ion  loss. Then y~,. ~, a~, t and  c~,_ ~ def ined  by:  

2 / an°pt 
1 - 3 x .  [c , ,p,  
0 1 

Y!-  1 

a~_ = 0 
cn- 0 

are the best  es t imators  of  y t_ 1, a tn-I and  cn-~t in terms of  ym, Y,~ 1, . .. y ~ .  Thei r  covar iance  matr ix  is: 

v . _ l  = D. V. + 8~. D'. = D.~D.' , .  

0 

(1) 

(2) 

3.1.4. Adding the previous measurement  
N o w  we add  the in fo rma t ion  b rought  by  yff_ 1. This  in fo rma t ion  concerns  y t_  1, a t . -  1 and  c~, ~, and  also 

an, which is not  useful for our  pu rpose  (it could  pe rhaps  be used for par t ic le  ident i f ica t ion  at low 

m om en tum) .  
The  l ike l ihood of the whole  set of measurement s  (ym . . .  yQ) ,  as a funct ion of  y, a, c (pa ramete rs  to be 

f i t ted  at  x . _  t) is given, up to a cons tan t  factor,  by  e x p [ -  ½Apt(If n_ l ) - tAP]  where the c ompone n t s  of zap 
are  Y-Y' . -1 ,  a -  a'~_ 1 and  c - e ; , _  i. The  l ike l ihood of  the ym_ 1 measuremen t  is s imply e x p [ - ( y -  
ym_,)2/2o2] .  

Since the errors  are independen t ,  the l ike l ihood funct ions  can be  mul t ip l ied ;  the m a x i m u m  l ike l ihood is 
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obta ined  by  minimizing the quadrat ic  function: 

m )2 
(Y - Y . - 1  A p t (  -1  v' ._,)  a p  + 2 

O 
with respect  to y, a,  c. 

The  best  es t imators  y°_pt 1, a °vt and c °pt . - a  n-1 are then solutions of  the linear system: 

1 0 1 [ _ _ "  ynm_l--Y'n_l (I.'._,)-'+ ~ 0 0 Y Y~-' 
0 2 

- -  a n _  1 
0 0 , 0 
0 0 - c~-l 0 

and their covar iance matr ix:  

1 

v~_,= (~ ._ , ) - '  + 
0 
0 o° 1/0 o 

(3) 

(4) 

(5) 

Eqs. (2) to (5) can be wri t ten with the in format ion  matr ices  (i.e. the inverted covar iance matrices,  in the 
Gauss ian  hypothesis) .  

Eq. (2) gives: 0 0]) 
I~,_, = ( D r )  -1 ( I , , ) - '  + 8a] 0 (D , , )  -1  

0 0 

with 

( O . ) - '  = 

0 

Moreover :  

1.*= (I,,)- '  

= / . -  

8z~. 
1 8x  n 2 

0 1 8x. 
0 1 

[ -0  0 0 - 

+ 0 ~a2 

0 0 

~a 2 [ ( In )2a 

1 + 80t2(I,,),,,, "'" 

= / . -  
~,,~ [o 0 o] 

2 / . /o  1 0J.t. 
1+8, . . ( / . )o, ,  [o o o 

• .. (,.)L I 

Eq. (4) becomes:  

in format ion  loss 

(6) 

1 -1  (D.')-  I . (D . )  + 

I ' _  1 

1 
o 

0 0 
0 0 

o]l[y , 
o///o a,., 
OJ]tC-C.-, 

m t 
Y,;-a --Yn-1 

= 0 2 
0 
0 

(7) 
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and eq. (5) gives: 

' oO] 
I~_,=I'~ ,+ oS 0 0 . 

0 0 
0 0 

information brought by the measurement 

This formulation avoids the explicit matrix inversions involved in eqs. (4) and (5). 
Table 1 summarizes the recursive algorithm. 

(s) 

3.1.5.  S t a r t i n g  the  recurs ion  

This can be done  by two practically equivalent means: 
- Using the last three points to calculate y, a, c at Xs_ 2, and their covariance matrix (including the 

scattering contribution at x s _  2 and x N_ 1 if necessary). 
- Starting the recursion at the last point, which defines YN with variance 0 2, but leaves a and c fully 

undetermined: one can assign to them approximate initial values and very large arbitrary variances: then 

the recursive algorithm can be applied without risk of  matrix singularity: the information brought by y~_ 2 
fits a and c at x s _  2, and the fitted values are nearly independent of  the initial ones. 

3.2. G e n e r a l i z a t i o n s  

We consider now a track in 3-dimensional space with an inhomogeneous  magnetic field. This is defined 
by 5 parameters (e.g. y,  z, a, b and 1 / p  at fixed x) .  Moreover the measured coordinates are not necessarily 
y or z at fixed x. 

Table 1 
One step of the recursive estimator 

Estimator Information matrix 

at x,,: yn°Pta°nPtc°n pt I .  

at x.:  yn°Pta°nPtc°Pt  1"~ = ( I.,-1 + A . )  1 

atx._~: y*.-:*.-,C-, 1.* ~=~D.~)-'I.*¢D.) 

[:'1 
given by: [a*_ 1 = ~ . / a : ' /  

~:-, L c;., j 

scattering 
at x .  

propagation from 

X n t O  X n _  1 

measurement 
at x . _ ,  

• o p t  o p t  o p t  
a t  x n - -  l .  Yn-- l a n - -  lCn--1 

given by the equation: r:,:] 
"*._,  + M.)|a°"_' ,  - aX_, = M . [  o 

L c°"-', - c*._, 

= * M n In - I 1._ I + 

In the parabolical schematization: 

I00 I0  1 - 8x. 8 x Z . / 2  "0 

D .  = 1 - 8 x  n An  = 

0 1 

0il [,,o201] 8 a  2 M,,  = 0 " 

0 0 
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We describe hereafter the 3 stages of each step of the recursion. Instead of the aximuth ~ and the dip ~,, 
we continue to us the slope parameters a =Py/Px = tan ~ and b =pJp~ = tan )~/cos ~: this avoids 
trigonometrical calculations. We use also: d = Ze /p  (B .  d is then the curvature for a track perpendicular to 
the magnetic field). 

3.2.1. scattering at x~ 
This affects only h and ~ (or a and b). Let ~n be the number of radiation lengths X 0 crossed from x n_ 1 to 

x~. For a 'homogeneous medium: 

x n - x ,_  1 8x, x/1 + a2 + b2 (9) 
in = X0 cos X cos ~, = Xo 

The scattering angles a and/~ in two perpendicular planes containing the track direction are indepen- 
dent random variables of variance 6a 2 = (KZ/pv)2~n. If one of these planes is vertical, the scattering angle 
in this plane represents exactly the variation of ~ and the other one of the variation of ~ multiplied by cos 
h; with the parameters g, and h, to account for the scattering consists in adding 8a2/cos22~ to V** and 8a2n 
to Vxx. 

With the parameters a and b, one finds easily, that one has to add: 

oOoo oOl)-, 
(In) -1 + ~,~ ~---~ 0 , 

i a l  0 t . _ _  _ , d  

0 0 0 

( l + a  2 + b 2 ) ( 1 + a 2 ) S a ~  to V~ 

( l + a  2 + b 2 ) ( 1 + b  2)8a~ to Vbb 

( l + a  2 + b 2 ) a b  8a 2 to Vab. 

In terms of information matrices, we get: 

0 0 
0 0 

i*  = ( ~ ) - '  ffi o o 

0 0 
0 0 

A = ( l + a 2 + b 2 ) [ l + a  2 ab ] 
ab 1 + b E " 

where 

(10) 

(11) 

The matrix inversions can be simplified in the same way as in sect. 3.1.4.: 

0 0 0 0 O ]  
0 0 0 0 0 

~ * = ~ - 8 ~ I ~  o o r . . . .  ~, o ~ ,  

o o , ~ a ;  o 
0 0 0 0 0 

(12) 

with 

.:(A l+ o ['ao ' 

3.2.2. Propagation from x~ to x~_ 1: 
The track extrapolation from a point to the previous one must be accurate: the cumulated error over the 
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whole length of the track should remain small with respect to the position uncertainty resulting from the fit. 
Any suitable method for this extrapolation allows to calculate also the (5 × 5) matrix of derivatives 
analogous to D, in eq. (1), either by analytical differentiation, or by finite differences. 

As a matter of fact, on the left-hand side of the equation which should generalize eq. (4), the matrix 
~,_ ~ can be calculated with an approximation for D~, assuming the field B to be constant along the track 
between x,,_ 1 and x, .  If the curvature is not too strong, we obtain for the parameters y, z, a, b and d: 

-1 0 

0 1 

Dn--- 0 0 

0 0 

0 0 

2 - 3x,, + F~ 3x,,/2 F23x2.,/2 F33x2/2 

G,3x2/2 -6x , ,  + G23x2/2 G33x2/2 

1 - F13x,, - F 2 3 x  n - G 3 x n  

- G18x,, 1 - -  G 2 6 x  . - G 3 3 x  . 

0 0 1 

(13) 

with 

F3=e[bB x + abBv- (1  + a2)Bz] ; 

G3= e [ - a B  x +(1 + b 2 ) B y -  abBz]; 

F l = d [ a F 3 / e 2 + e ( b B v - 2 a B z ) ]  

F2=d[bF3/e  2 + e ( B  x + aBv) ] 

G 1 = d[aG3/e  2 - e ( B  x - bBz) ] 

G 2 = d [ b G 3 / e 2 + e ( 2 b B y - a B z ) ] ,  

w h e r e  e 2 = 1 + a 2 + b 2. 

3.2.3. Addition of a measurement 
In many cases each measurement consists in determining y or z, or a combination t = )~y +/~z, at a 

given fixed x. Here it is useless to build space points from several raw measurements: such a procedure 
implies sometimes a loss of information. 

The likehood of measurement t m is now, in the Gaussian approximation: n--1 

1 (Xy +/~z_- t ._a)  
exp - 

and the linear system (4) becomes: 

Ill 1[ 1 #2 0 0 0 z - z . _ l  , , 
. 1 ~ ' ( t T - , - X Y . - , - ~ ' z . - , )  (14) 

0 0 0 0 a - a , , _  1 = o S  0 
(~n- ' ) - l - [ -~"~  0 0 0 0 b - b '  [ o  °_ ,  o 

0 0 0 0 d -  d' 0 
n--1 

Of course, if y and z (or two independent combinations of y and z) are available at the same x, both 
measurements can be included together in one equation like (14). 

If the information refers to a non-linear combination of y and z, it can generally be linearized around 
the measured values. 

When the measured quantity depends only on x, especially in the case of optical measurements, one can 
transform the raw information into information at fixed x; this transformation is a projection along the 
direction of the track. Several examples are described in detail in ref. [4]. 
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3.3. Extension to energy loss 

The energy loss can be taken into account in natural way: it is enough, in the progagation, in the 
propagation stage 3.2.2., to add a suitable quantity to the d parameter.  Moreover, it is possible to introduce 
a (Gaussian) uncertainty on this energy loss, as in 3.2.1., by adding a contribution to Vad in the same time 
as V.~, Vh~ and V~b at the scattering stage. 

4. Comparison between the optimal fit and the standard fit 

4.1. Introduction 

Our aim is to determine the gain in precision on the parameters, brought by the optimal estimators, with 
the same model as in 2.2. and 2.3., and the same notations. 

In the optimal fit, the variances of the parameters cannot increase as measurement points are added (in 
other terms, addition of measurement cannot cause a loss of information). Thus, for n ~ ~ they must tend 
toward some limits (possibly zero). Again we use the Gaussian approximation: so the covariance matrix V 
of the fitted parameters is the inverse of the information matrix I. 

4.2. Scattering at one point 

The expressions of the measured variables show that the measurements after L 0 are independent of those 
before L0, so that the total information matrix on the parameters ( Z  and b) at the origin is the sum of the 
contributions brought by the two portions of track delimited by the scatterer 

For the second portion (after L0) , we calculate first the information on the parameters at x - - -L  0 
(including the effect of the scattering uncertainty), and then we propagate it back to x -- 0. At x = 0 we add 
the information of the first portion (before L o), where no scattering uncertainty occurs. 

This calculation gives the covariance matrix of the parameters,  hence their errors as represented in fig. 
2a and b (dotted curves). These curves show that the gain in precision of the optimal estimator is large 
when p is large a n d / o r  when n > 3n o (however at very large values of n the gain vanishes for the curvature). 

Let us note that in this case (scattering at only one point) the optimal fit can be reduced to two standard 
fits (one for each track portion, before and after Lo) connected together by the three elementary operations 
defined in sect. 3: accounting for the scattering at x = L 0 for the second portion, propagating the 
information matrix of this portion back to the first point, and adding the information of both  portions. An 
analogous strategy could be adopted with few scattering points, provided that each portion of track 
between two scatterers has a sufficient number of points to perform a standard fit: the information brought 
by each portion could then be merged recursively as described in sect. 3. 

4.3. Uniformly distributed scattering 

The formalism developed in sect. 3 gives a recursive expression of the optimal information matrix: if the 
track has n + 1 points, the last n points give an information matrix I ,  for the parameters  at the second 
point; then the first measurement can be added within one step of the recursion: so we obtain 1,+ 1 for the 
parameters at the first point. 

For Z and b parameters  (straight line fit in the vertical plane) this gives: 

0] 
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For Y, a and c (parabolic fit in the horizontal plane): 

[, ° °If (i ° ill Ii ,,2j2 1 . +  1 = l 1 0 I n  1 + 3 a  2 1 l 

12/2 l 1 0 0 1 

Oh 2 0 0 

+ 0 0 " 
0 0 

From these formulae we can deduce an expansion of I n in powers of 8a 2, valid for small q (let us recall 
q = lSa/o)  up to n = 1 / ¢ q .  As a result, the optimal covariance matrix, at first order in ~a 2, is identical to 
the standard one, found in sect. 2. thus the standard fit is quasi-optimal for n < 1/v/q (as can be seen in 
figs. 4 and 5) and it is useless to search for others estimators (e.g. giving to the measurements weights 
decreasing with n). 

The recursion relations enable us to calculate also the limits of the variances for n --, oo. they can be 
expanded in powers of e q :  

qv _ qv÷ ...). 

Io;,2;¢ ) 
(~r~) 2 and (aa°°) 2 have the same expressions as ( o ~ )  2 and ( o ~ )  2 where o v is replaced by o h, and qv by qh. 

Figs. 4 and 5 show the comparison between the standard uncertainties and the optimal ones. 

5.  I m p l e m e n t a t i o n  o f  t h e  r e c u r s i v e  m e t h o d  

5.1. Description of the experiment 

We used real events from the CERN WA13 experiment, which was realized in the Omega spectrometer 
equipped with optical spark chambers; its aim was to study hadronic large-angle reactions giving in the 
final state two charged particles or two neutrals decaying in charged mode; detailed description of the 
experiment can be found in refs. [3] and [4]. Fig. 6 summarizes the measurement apparatus: in their 
measured section, the tracks crossed mainly the spark chambers (0.06 Lra d for the whole set of chambers) 
and a 1 cm thick scintillator $6. 

We used events produced at 3 GeV/ c ,  and we did not apply kinematical cuts: the momenta  of the 
reconstructed tracks ranged from a few hundred MeV/c ;  the outgoing particles were not identified. 

5.2. Programmation of the algorithm 

The recursive method was programmed in the following way: 
- All matrix operations were written explicitly, without subscripted variables or loops, in order to save 

computat ion time (this is possible because all matrices involved have the same dimension). 
- The propagation between two points (generally separated by 6 to 10 cm) was realized in two steps by a 

fourth-order Taylor expansion of the trajectory; the propagation of the information matrix used the second 
order approximation (cf. (3.13)). The magnetic field was assumed to be uniform between these two points. 
In most cases this calculation was much too accurate; it was needed for low-momentum particles emitted at 
large angle. 

Every time the distance between two measured points exceeded 10 cm, dummy points were inserted. 
- The variances of the scattering angles were calculated in two velocity hypothesis: ultrarelativistic 

(valid for or) and proton. 
- The measured points were extracted with their weights defined at fixed x, from ROMEO (standard 
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reconstruction program for Omega events), just  before the final fit, so that both  fitting procedures worked 
on exactly the same input. 

- The starting value of the curvature parameter  was estimated with three points (at the beginning, in the 
middle and at the end of the track); for the slope parameters,  the last two points were used, with a 
curvature correction. As a matter  of fact, the fitted values do not appear  to depend strongly on the initial 
ones. After 3 or 4 recursion steps, the gaps between the extrapolated trajectory and the measured points are 
compatible with the measurements errors, and moderate deviations on the starting values are automatically 
corrected; for example, estimating the slope without curvature correction between the last two points has 
no appreciable effect on the fitted values. 

The computation time for one recursion step (propagation + measurement + scattering) amounted to 
about  360/~s on CDC CYBER 750, equivalent to 160/~s on CDC 7600 (the computat ion of the magnetic 
field is not included). The time for a whole track is obviously proportional to the number  of points on this 
track. 

5.3. Test o f  the precision 

From the parameters fitted at the first measured point we extrapolated the tracks backwards to find 
intersections, and we determined the points of  closest approach between each pair of tracks with opposite 
sign. 

Fig. 7 shows the distributions of the minimal distances obtained with the standard program ROMEO, 
and with our algorithm (for both mass hypotheses). 
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Fig. 6. Layout of the WA13 experiment in the Omega Spectrometer. 

Fig. 7. Comparison between the standard fitting method of ROMEO and the re.cursive implementation of the optimal estimator: 
distance, at the point of closest approach, between two tracks extrapolated backwards to the vertex. 
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The precision is clearly improved by our method. The improvement is not very strong, but anyway the 
theoretical gain that we could deduce from sect. 4 for this experiment, is not enormous. Moreover there was 
matter  accumulated around the vertex (the hydrogen target was surrounded by scintillators) which 
worsened its geometrical precision, and for which optimization cannot help. For the same reason, no 
appreciable improvement can be expected in the kinematical resolution. 

6. C o n c l u s i o n  

The standard fitting procedures, applied to slow tracks measured over a long length, a n d / o r  with high 
accuracy, lead to important  losses of precision on the geometrical parameters. They can be improved by 
taking account of the measurements up to a certain length only; this optimal length can be evaluated from 
analytical approximations of the variances. In many cases, especially in a homogeneous medium, this 
" t runcated"  fit is not far from being optimal. Its main drawback is that the optimal length depends on the 
choice of parameter  for which one wants the highest precision; moreover it was calculated assuming 
Gaussian independent measurement errors, and we do not know how it would be modified by small 
uncorrected geometrical distorsions, or by non-Gaussian errors (e.g. in a MWPC). 

The optimal fit (without information loss) is usually realized by calculating the whole covariance matrix 
of the measurements, or by adding extra parameters to describe the scattering [1]; these methods involve 
handling big matrices. In this paper  we described a new implementation of the optimal estimator: the 
parameters  are fitted backwards by introducing the measured points one at a time from the end to the 
beginning of the track. The elementary steps are thus: including one or several raw measurements, a n d / o r  
one elementary scattering: from one point to the next one the parameters and their information (or weight) 
matrix are propagated by a local polynomial parametrization. 

Such a procedure is very flexible: it can be applied to various types of detectors, and especially to 
composite detectors. Moreover it does not require more computation time than the standard ones (perhaps 
less); contrary to the "b ig  matrix" optimal methods, the time used is merely proportional to the number  of 
points. 

The implementation of this algorithm on real events shows an improvement  of the geometrical accuracy; 
its order of magnitude corresponds to what could be expected. The fitted values of the parameters appear 
to be stable with respect to the starting value chosen at the end of the track: thus no iteration is needed to 
obtain the best estimate; the algorithm stabilizes after 3 or 4 steps along the track. 

Finally we point out that this method, in some configurations, could be able to perform at the same time 
the pattern recognition and the geometrical reconstruction of the tracks, since it gives in a short time the 
best extrapolation of a track candidate built up with the most external points. 

I thank Professor M. Froissart for helpful discussions and suggestions. 
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