

ExB Corrections for the STAR and ALICE TPCs

Jim Thomas

24 - February - 2011

The Langevin Equation – (see Blum, Riegler and Rolandi)

 $m\frac{d\overline{u}}{dt} = e\overline{E} + e\left[\overline{u}\times\overline{B}\right] - K\overline{u}$

substituting:

Solve:

Microscopic Lorentz force with "Friction"

$$\tau = \frac{m}{K}, \quad \omega = \frac{e}{m} |\overline{B}|, \quad \mu = \frac{e}{m} \tau, \quad \text{and} \quad \hat{E} = \frac{E}{|\overline{E}|}$$
subject to the $d\overline{\mu}$

steady state condition

$$\frac{d\overline{u}}{dt} = 0 \qquad \text{yields}$$

$$\overline{u} = \frac{\mu |\overline{E}|}{(1+\omega^2 \tau^2)} \left(\hat{E} + \omega \tau \left[\hat{E} \times \hat{B} \right] + \omega^2 \tau^2 \left(\hat{E} \bullet \hat{B} \right) \hat{B} \right)$$

where B is a unit vector pointing in the direction of \overline{B} .

An Example: The Case of $E \approx$ Parallel to B

etc...so Assuming cylindrical coordinate and $E = E_z$ and $B_z >> B_r$ or B_ϕ

Distortion Equations – related to integrals of the fields

$$\omega \tau = BField[kGauss] * \frac{-10. * |Drift Velocity[cm/\mu sec]|}{|Electric Drift Field Strength [V/cm]|}$$

- Distortions in the TPC are directly related to integrals of the E and B fields
- These solutions of the Langevin Equation are exact to 2nd order
 - The matrices are rotations (with a pre-factor) related to the Lorentz angle
 - Since rotations commute in 2 dimensions, these matrices commute with other rotations. These same equations are valid in Cylindrical Coordinates, $\delta x \Rightarrow \delta r$, $\delta y \Rightarrow r * \delta \phi$

If you have a well defined model, and good data, then the distortion can be removed with great precision

