Lorentz effect

Observation from data: shift in <z>
residuals of the order of 200µm
depending on the B-field orientation.
Not all shifts explained by sign of B.

 Lorentz effect: trajectory of electrons/holes are modified due to the combination of the STAR magnet B-field and the SSD wafer E-field

Lorentz effect correction in the code

- Values from CMS : ϑ_e^- , ϑ_e^+
- Θ_L = 21° for electrons and Θ_L = 8° for holes (at T = 280 K and V_{bias} = 40 V [1])
- Normalized to STAR B-Field

$$tan(\theta_L^{STAR}) = \arctan(an(\theta_L^{CMS}) imes rac{B^{STAR}}{B^{CMS}})$$

$$\Delta(x) = an(heta_L^{STAR}) imes d$$
 $\Delta x = 12 \ \mu m$ for electrons $\Delta x = 4.2 \ \mu m$ for holes

d = drift distance along the E-field (d = 150 microns, half-thickness of the wafer)

Thus the anode and cathode strips will experience different distortions on the two sides of the detector. When reconstructed, this leads to a distortion in the Z direction approximately equal to $\tan(\theta_e - \theta_h) * d / \tan(\theta_{ac})$ or about 210 μm .

