The Main Control Panel for the SSD

• For normal operations push

"Turn SSD On" (5 minutes) or "Turn SSD Off" (3 minutes)

- Turn the SSD "ON" when beams are stable and ready for "Physics Running"
 - Include the "SST" in the run at the DAQ console
 - Include the "SST" trigger in the run
 - Start Run
 - Turn the SSD "OFF" in preparation for a beam dump
 - Turn the SSD "ON" for Pedestals or Cosmics then OFF again when done. See next page.
- The large circle will change Red / Yellow / Green
 - The detector is "ON" when the console screen says "SSD Detector is ON and configured for Normal Ops"
 - The detector is "OFF" when the console screen says "SSD Detector is OFF"
- Call an expert if you have questions

MEDM Version 3.1.7: Loading aliased fonts..... Loop from 0 to 7 Turning Hybrids ON on Fibers 0 in all RDOs ... Turning Hybrids ON on Fibers 1 in all RDOs ... Turning Hybrids ON on Fibers 2 in all RDOs ... Turning Hybrids ON on Fibers 3 in all RDOs ... Turning Hybrids ON on Fibers 4 in all RDOs ... Turning Hybrids ON on Fibers 5 in all RDOs ... Turning Hybrids ON on Fibers 5 in all RDOs ... Turning Hybrids ON on Fibers 6 in all RDOs ...

How to take a Pedestal run or a Cosmics run

- Cosmics are taken in "Pedestal" mode
- Ensure that the beam is off
- Turn the SSD "ON" (5 minutes)

The detector is "ON" when the console screen says "SSD Detector is ON and configured for Normal Ops". Wait for it.

 Push the "Pedestal" button to switch to RAW mode data taking for Pedestals and/or Cosmics

Wait until console screen says "RDOs are ready to take RAW Data (e.g. for Pedestal files or Cosmics)"

- Set DAQ and Trigger for Pedestals or Cosmics, as required. Start run/take data
- Push the "Normal" button when done with pedestals and/or cosmics

Leave the detector ON and in pedestal mode if the next run will be a cosmic run. Otherwise, turn the detector off.

ŀ	DM Version 3.1.7: Loading aliased fonts
L T T T	op from 0 to 7 rning Hybrids ON on Fibers 0 in all RDOs rning Hybrids ON on Fibers 1 in all RDOs rning Hybrids ON on Fibers 3 in all RDOs rning Hybrids ON on Fibers 4 in all RDOs rning Hybrids ON on Fibers 5 in all RDOs rning Hybrids ON on Fibers 6 in all RDOs

SSD Operations Notes

- The SSD should be on when the PXL+IST detectors are on (Unless otherwise instructed)
 - Usually, this means "Normal data taking" but also includes Cosmic, Pedestal and Raw Data runs

- You may reset bad ladders when they appear in the online plots or on the SSD console screen
 - Do not stop the run
 - Alternatively, check the SSD console at the end of each run. Good time to reset.
- Major issues can be resolved by power cycling the SSD
 - Stop the run and remove the SSD from DAQ. Start a new run without the SSD while cycling power. Start a new run with the SSD when ready.

SSD Operations Manual

SSD QA Plots

- The SSD is also known as the "SST".
 - SSD is for hardware, SST is used by DAQ
- The SSD uses Si P/N junction diodes
 - The SSD reads data from both the P side and N side of the Si
 - The right most bar on each plot is the vertical scale for the histogram

٠

•

- Note that the scale is zero suppressed and auto scaled
- Thus, the blue bar indicates fewer counts than red, but NOT zero
- Plots show the number of events recorded per ladder
- These plots are OK ... if the Ladder Monitor is also OK

Starting the SSD Control Panel ... if it is off

- Start or restart the SSD Computer and login
 - it's a windows box, so do windows things
 - User: .\ssd (the ".\" represents the local domain name)
 - Password: ask the shiftleader
- Start an ssh terminal session and connect to ssd-upgrade.starp.bnl.gov
 - Start "MobaXterm Personal Edition" (there should be a shortcut on the desktop)
 - Click on sessions tab (on left) and select "ssd-upgrade.starp.bnl.gov (ShiftCrew)" in the menu that contains a list of logon accounts
 - Wait for a terminal window to open and greet you with a prompt
 - You should be in the home directory for the ssd account, if not type "cd /home/ssd"
 - The ssd-upgrade machine is running Scientific Linux 5.9 ... it even has ROOT, but it is the main EPICS & DAQ computer for the SSD so please don't use it for anything other trivial CPU activity
- Start the SSD main control panel
 - From the ssd home directory, type "sh ssdTop"
 - Wait for the Control Panel to pop up and then click "Ladder Monitor"
 - Done. This is the normal run-time configuration for the SSD.

Ladder Monitor ... shown during starting up

- If you see red alarms on the monitor screen
 - This is normal during startup and shutdown
 - But ... push "Reset Ladders" on the start screen if you see red alarms while running
- Power Supply Voltages
 - Green = on, Red = off
- FPGA status
 - Green = on, Red = off
- RDO # ... (0-4)
 - the SSD has 5 RDO's
- LC # ... (0-7)
 - 8 ladder cards per RDO
- Hybrid Power (16 total)
 - Status of the hybrids on each LC (red/green)
- Raw Bits
 - For expert analysis

	testMon.adl (on ssd-upgrade.starp.bnl.gov) □ ×															
	temp sensors (deg C)															
0	1	2	3	5V	+2V	-2V	HV	Lad	LCid	FPGA	tokens	tests	holds	aborts	RDO LC	Hyb Pwr bits
29	28	- 27	- 26			٠	۲	W01N	61		0	0	0	0	0 0	DRaw
30	29	26	28					W02N	27		0	0	0	0	0 1	DRaw
37	28	26	28				2	WU3N LIOAN	08 46				U N		0 2	
20 22	20	20	20			2	2	WU4N MO5N	40 14	-					03	
31	28	25	20		-	-		WAGN	42				Ň		05	
31	27	26	27	- -	- -		ā	W07N	53	- -	Ő	Ő	Ő	Ő	06	QRaw
31	29	25	27	ē	ē	ē	ē	W08N	38	ĕ	0	0	0	0	0 7	DRaw
33	29	26	29		٠	٠	۲	WOON	25		0	0	0	0	1 0	DRaw
29	29	25 25	28	. •				WION	20		0	0	0	0	1 1	DRaw
31	29	26	29	. 👤				WIIN	59		0	0	0	0	1 2	DRaw
34 29	29 28	25 26	26 27			5	5	WIZN WI3N	99 39		Ŏ	Ŭ	Ŏ	Ŭ	$1 \ 3 \ 1 \ 4$	DRaw DRaw
31	29	- 27	- 27					W14N	57		0	0	0	0	15	QRaw
31	28	25	26					W15N	16	. •	Ŏ	0	Ŏ	0	16	QRaw
29	Z8	26	27	. 👤				WIDN MIDN	34	. 👤 .		U N	U N	U Â	1 /	DRaw
50 20	29	20 26	28	2		2	2	WI /N	19				- V		2 U 2 1	
30 31	29	26	28				-	W19N	31		ŏ	ŏ	ŏ	ŏ	22	
32	30	26	29	ē	ē	ē	ŏ	W20N	51	ē	0	0	Ō	0	23	DRaw
30	28	24	27			٠	۲	E01P	62		0	Q	Q	Q	24	QRaw
29	29	26	26					E02P	23	. •	0	0	0	0	25	DRaw
28	<u>Z/</u>	ZD	27	. 👤				E03P	40			0	U A	0	25	DRaw
31 30	28 28	20 25	20	- 2	2		2	E04P E05P	28 36	-	Ň	Ň	Ň	Ň	3 0	DiRaw DiRaw
30	27	24	27	- -	- -		ā	E06P	13	- -	Ő	0	Ő	Ő	3 1	
29	27	25	27	ē	ē	ē	ē	E07P	33	ē	Ö	Ö	Ö	Ö	32	
31	28	24	26			٠	۲	E08P	30		0	0	0	0	3 3	<u>D</u> Raw
31	26	25	27	. 👤				E09P	41		0	0	0	0	34	DRaw
28	<u>28</u>	22	27	2		2	2	EIUP F11D	1/				- V		35	<u>D</u> Raw
50	20	20	- 22			-		F12D	40 44				U 1202		30	
30	28	25	26					E13P	60		0	0	0		4 0	
30	28	24	27	ā	÷.	÷.	ē	E14P	24	- ē	Ő	- Ů	Ő	Ů	4 Î	
29	27	25	28					E15P	18	ē	Ő	Ŏ	Ŏ	Ŏ	4 2	
31	27	25	26			۲	۲	E16P	37		0	0	0	0	4 3	QRaw
30	29	25	28		•	•		E17P	54		0	0	0	0	4 4	QRaw
30	29	23	27					EISP	50			0	0		45	DRaw
51 20	28	25	27	-			-	E19P	34 21						4 0	Line Line Line Line Line Line Line Line
9U	40	20	41		-			EZ0P	61	-	V	V	V	V	4 /	-DRaw

the cooling air flowing through the SSD ladders

Normal reading ~ 3.5

The air flow gauge monitors

- The interlock system will shutdown the SSD if the air cooling fails.
 - No operator action is required to shutdown the system although many alarms will be activated.
 - Recovery after a cooling failure requires an expert.
 - The temperature of the cooling air is not very sensitive to the temperature of the detector. The value shown here will rarely rise above room temperature. See the "Ladder Monitor" page for more useful temperature readings.

٠

Ladder Expert

- Panel for configuring ladder cards EXPERTS ONLY!
- Power up the SSD by selecting "All" and "All" in the RDO and Fiber menu boxes
 - Push: 1.) Turn On Power 2.) Config LC3.) Turn Hybds ON 4.) Config Alice
 - Important: wait for "done" in console window between each step
- RDOs and Fibers can also be configured (On/Off) one at a time.

(In this context, "fiber" is a synonym for "ladder card")
1.) Config LC 2.) Turn Hybrds ON 3.) Config Alice
"Turn On Power" is only done once per session, not per Fiber

- Configure DAQ is for superExperts
- Calibrate LVDS is for superExperts
- etc.

Power Expert

🗙 ssdPower.adl		CL	de tra mal de la	
Main Power Switches	Temperature (°C)	Crate 1	Temperature (°C)	Crate 2
	slot 0 23	West 2V L01-L04	slot 0 23	DWest 5V L01-L08
	slot 1 23	UWest 2V L05-L08	slot 1 23	DWest 5V L09-L16
2	slot 2 24	UWest 2V L09-L12	slot 2 24	<mark>- 관₩17-20 5¥ E01-E0</mark> 4
Fan Speed 1 (RPM) 2400	slot 3 23	UWest 2V L13-L16	slot 3 24	DEast 5V L05-L12
0 2400 3200	slot 4 23	Uwest 27 L17-L20	slot 4 24	DEast 5V L13-L20
Fan Speed 2 (RPM) 2400 0 2400 3200	slot 5 23	DEast 2V L01-L04	slot 5 25	DBias HV L01-L08
	slot 6 23	<mark>민East 2V L04-L08</mark>	slot 6 26	DBias HV L09-L16
☐ All On / All Off	slot 7 23	DEast 2V L09-L12	slot 7 26	DBias HV L17-L20
Crate 1 Crate 2 Batch Mode Batch Mode	slot 8 24	DEast 2V L12-L16	slot 8	DEmpty
DExpert Info DExpert Info	slot 9 26	DEast 2¥ L17-L20	slot 9	□ Empty

- The main power should never be switched off. Fans always at 2400 RPM.
 - Not even in an emergency. (SSD Interlocks will automatically switch off the power in case of emergency.)
- Experts only!
 - Use the "All On / All Off" to turn power on manually. On: 5V first, then $\pm 2V$, then Bias. Off: Reverse order

X AllOn.adl		
Control of All SSD 5V Modules	Control of All SSD 2V Modules	Control of All SSD Bias Modules
0ff(0)	Off(0)	0ff(0)
On(1)	On(1)	On(1)
		Clr Events (trip)

• All On / All Off

- On: 5V first, then \pm 2V, then Bias. Off: Reverse order

Clear Events (on HV trip)

 Press CIr Events if an HV channel has tripped off. Reset HV channel manually to prescribed voltage.

🗙 batch.adl		_		
Crate_1 All Modules	Crate_1 All LV Modules	Crate_1 2V Modules	Crate_1 5V Modules	Crate_1 Bias Modules
0ff(0)	0ff(0)	0ff(0)	0ff(0)	0ff(0)
0n(1)	0n(1)	0n(1)	0n(1)	0n(1)
resetEmergency(2)	resetEmergency(2)	resetEmergency(2)	resetEmergency(2)	resetEmergency(2)
setEmergency(3)	setEmergency(3)	setEmergency(3)	setEmergency(3)	setEmergency(3)
disableKill(4)	disableKill(4)	disableKill(4)	disableKill(4)	disableKill(4)
enableKill(5)	enableKill(5)	enableKill(5)	enableKill(5)	enableKill(5)
clearEvents(10)	clearEvents(10)	clearEvents(10)	clearEvents(10)	clearEvents(10)

Experts only!

- Note Crate_1 or Crate_2 controls
- Batch mode
 - For controlling groups of modules

Berkeley

SSD Operations Manual

Power Expert: Setting individual channels

Rise Rate

LVmodule.adl (on ssd-upgrade.starp.bnl.gov) _ =									
Channel:	Set Voltage(V)	Set Current Limit(A)	Terminal Voltage(V)	Sense Voltage(V)	Measured Current(A)	Rise Rate (V/s)	Supervision Behavior		
u0_West_L01_2Vplus						<. <i></i>			
🔲 🔲 80 outputOn(0)	2.200	2.000	3.307	2, 203	0.591553	100	17680		
u1_West_L01_2Vminus									
B0 outputOn(0)	2.500	4.000	6,503	2,507	2,133789	100	17680		
u2_West_L02_2Vplus									
🔲 🔲 80 outputOn(0)	2.200	2.000	3,296	2, 191	0.585693	100	17680		
u3_West_L02_2Vminus									
🔲 🔲 80 outputOn(0)	2.500	4.000	6,404	2,500	2.072266	100	17680		
u4_West_L03_2Vplus	,								
🔲 💭 80 outputOn(0)	2.200	2.000	3, 223	2, 201	0.540039	1 00	17680		
u5_West_L03_2Vminus	,								
🔲 💭 80 outputOn(0)	2,500	4,000	6.370	2,503	2.034912	100	17680		
u6_West_L04_2Vplus									
80 outputOn(0)	2,200	2.000	3, 313	2, 196	0.588135	100	17680		
u7_West_L04_2Vminus									
📁 🧾 😑 80 outputOn(0)	2,500	4.000	6,439	2, 508	2,080322	100	17680		

Experts Only!

٠

- Note: complex mapping from channel # to SSD Ladder #
- Highlight value to be changed, enter change and hit (CR)
- (very important to hit (CR))
- Changes made here are permanent

• For setting individual channels

- On/Off
- Set Voltage (target voltage)
- Current limit
- Rise rate (volts per second)
- Supervision behavior (on trip)
- "Sense" voltage is the actual voltage on the detector

Channel:	Set Voltage(V)	Set Current Limit(A)	Trip Time Out(ms)	Measured Voltage(V)	Measured Current(A)	(¥/s) [1
	s_17 [46.000	0.010	504	0.044	0.000000	
u701_HV_Bia	s_18	0.010	504	0.024	0.000001	Q More
u702_HV_Bia	s_19					
u703_HV_Bia	40.000 s_20	0.010	504	0.030	0.000000	QMore
	70.000	0.010	504	0.002	0.000000	- QMore
	p.000	0.010	504	0.019	0.000001	QMore
u705_HV_Spa	re_2	0.010	504	0. 011	0. 000001	DiMore
u706_HV_Spa	re_3					
u707_HV_Spa	₫5.000 re_4	0.010	504	5,000	0.000002	OMore
	0.000	0.010	504	0.001	0.000001	GMore

SSD Operations Manual

Schematic Representation of the HFT

- The STAR Heavy Flavor Tracker – the full suite
- TPC SSD IST PXL
- TPC pointing resolution at the SSD is ~ 1 mm
- SSD pointing at the IST is ~ 400 μ m ϵ = 0.98
- IST pointing at PXL 2 is ~ 400 μ m ϵ = 0.98
- PXL 2 pointing at PXL1 is ~ 125 μ m ϵ = 0.93
- PXL1 pointing at the VTX is < 40 μ m ϵ = 0.94
- $-\epsilon$ = track matching efficiency

Annual Expert-Only Start-up Tasks

- STAR Global Interlocks OK. STAR inner field cage air ON.
- Check that SSD interlock permissive is OK (behind Wiener crates)
- Start SSD cooling air (industrial vacuum on North Platform)
- Wiener Power Crates plugged in and ON. VME crate for RDO ON (crate 97, see next page)
- USB hubs up and fibers OK
 - Two behind VME crate for RDO's, in control room (SSD desk) and DAQ room (behind ssd-upgrade)
- SSD computer in control room is up & ssd-upgrade.starp.bnl.gov is up
- Wiener LV Settings
 - 2.2 Volts @ 2 Amps Group 2 PWM = 3.5 Moderate Reg checked, Slow Reg checked, Enable inhibit checked
 - 2.5 Volts @ 4 Amps Group 2 PWM = 7.0 Moderate Reg checked, Slow Reg checked, Enable inhibit checked
 - 5.0 Volts @ 3 Amps Group 5 PWM = 4.6 Moderate Reg checked, Slow Reg checked, Enable inhibit checked
- Start IOCs on ssd-upgrade.starp.bnl.gov (/ioc/siocps > sh run, /ioc/siocftdi > sh run)
 - (Cntrl-A + Cntrl-D) to disconnect, screen –list to view running screens, screen –r #### to reconnect
- cd to /home/ssd and start SSD Control Panel with "sh ssdTop"
- Read, review and set HV Bias and Alarms settings with scripts in epics/ioc/siocps/head/scripts
 - sh SSDPower_Bias_Set
 - sh SSDPower_Bias_Alarm
 - sh SSDPower_Alarm_Set
- Calibrate LVDS link ... you should see 0xFF...FF80400000 for all 5 RDO's if successful
 - a button under the Ladder Expert screen. Start SSD and perhaps do again, if necessary, and restart SSD
- Start SSD with special attention to Pedestal (Raw) versus Normal running

File Locations & VME Crate Numbers

- Pedestal files from DAQ on ssd-upgrade.starp.bnl.gov
 - /data/PEDESTALS
- Pedestals to be installed in RDOs on ssd-upgrade
 - /usr/local/epics/ioc/siocftdi/head/scripts/cmd/PEDESTALS
- High resolution online plots ... use ROOT TBrowser to view
 - /net/evp.starp.bnl.gov/a/jevp/rootfiles/*.root
- Cycle power on RDO VME crate 97 to reload firmware in RDO's
 - SSH to <u>sysuser@sc5.starp.bnl.gov</u>
 - type "vme_plat1" alias for "medm –x –cleanup /home/sysuser/GUI/vme/vme_1st_plat.adl &"
 - Select pink square on crate 97, mouse over and click vme 97
 - Click "Control Off", wait 3 minutes, click "Control On"
 - Check that fans ramp up to 3120 ... bump up if necessary
- To load RDO firmware, go to MobaXterm \ssd account (on Windows)
 - Execute "/RDO_Config_BIT.sh -v 0039 -s 1" (and then 2). See page 7 of Luis's SSD operations manual, section 11, for more details.
- To start online plots, logon to rts05 and start jevp (ignore server tags on file menu(?))
- MPOD Crates for Wiener Power supplies: 130.199.60.11 and 130.100.60.15

Tuning a new MPOD or ISEG module

- Changes to MPV8016 "2" volt modules (all 8 channels)
 - Even Channels => 2.2 Volt Sense at 2 amps
 - Odd Channels => 2.5 Volt Sense at 4 amps
 - Untick internal reference, tick external, >1m and > 50m (3 tick boxes)
 - 10.0 Max voltage, 10.0 Max voltage
 - Group 2
 - PWM offset 3.5 for even channels, 7.0 for odd channels
 - Use Muse control Admin Mode to adjust PWM offsets
- MPV8016 5 volt modules
 - 5.0 Volt Sense at 3 amps
 - Untick internal reference, tick external, >1m and > 50m (3 tick boxes)
 - 10.0 Max Voltage, 10.0 Max voltage
 - Group 5
 - PWM offset 4.6
- ISEG HV modules
 - Activate external safety loop with a jumper on the back of the module (!)

Backup Slides

SSD Operations Manual

The SSD before inserting into the TPC

Special thanks to Thorsten and Luis for this small miracle

Ladder card performance is excellent

Performance of ladders is as good as it was in 2007 (i.e. 90-95% live modules)

SSD Overview – the SSD sits on the OSC

The STAR Silicon Strip Detector

SSD Operations Manual

SSD Parameters

- Double sided Si wafers 300 μ m thick with 95 μ m strips that are 4.2 cm long
 - Strips crossed at 35 mrad effective resolution 30 μm x 900 μm
- Located at 22 cm radius
 - 20 ladders, 67 cm long
- air cooled
- |η|<1.2
- 1 % radiation length @ $\eta = 0$

SSD The SSD was an existing detector \Rightarrow upgrade **Existing Detector** w/ Si modules **Electronics Upgrade** \Rightarrow kHz rates Mechanical & Conv. systems upgraded

SSD Operations Manual

Ladders and Ladder Cards

- Foam and Mylar wrap applied to Ladders and Ladder Cards
- Ladders installed and tested
- Analog performance is excellent (analog noise < noise from modules)
- JTAG communications work, T readback OK
- Power consumption is as expected for +5V, +2 V but -2V is a bit

high ... may be an issue with power supplies over long lines.

SSD Operations Manual

Ladder Cards

- The Ladder Card contains the ADC to read-out each of the Si modules
- On-board FPGA
- Faster, lower noise
 - 1 kHz (16% DT)
 - 10x lower noise

Survey

- Ladders were surveyed to ~10 μ m precision
- Typically, the wafers are positioned < 50 μ m wrt the goal, comparable to our resolution
- A small number of wafers are displaced ~1 mm
- The displacement due to gravity of each ladder has been measured

SSD Operations Manual

