Tracking in Cylindrically Symmetric Magnetic Fields

By Jim Thomas

Introduction

Tracking charged particles in a cylindrically symmetric magnetic field relies upon our knowledge of the integrals
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 evaluated along the paths of the particle trajectories. I will show that the angle between the particles final direction of motion and its initial direction of motion is proportional to 
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 while the angle between the particles final direction of motion and a line drawn between the origin and the end point of the track (e.g. a detector hit) is proportional to
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 .  Clearly, 
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 is relevant when a detector configuration includes particle tracking before and after the magnet while 
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 applies to detector configurations where the tracking detectors are placed after the magnet.

Tracking before and after a magnetic field region is the most powerful method of spectroscopy.  In this case, the displacement of the particle’s endpoint from the initial trajectory endpoint (i.e. the infinite momentum ray) is proportional to 
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 and this is an excellent experimental observable.  (R is the value of the radius coordinate at the endpoint of the track.)

These observations are important in designing tracking algorithms for modern high energy and nuclear physics detectors.   They are also important in designing magnet mapping devices for these detectors because it makes it clear what to examine when asking the question "how well must the field be mapped to achieve the required spectrometer resolution?".

Feynman Finger Physics in a Cylindrically Symmetric Field

A cylindrically symmetric field is defined by the quantities (r,,z) and B(r,,z).  The only symmetry I assume is in .  It is not necessary to postulate a field uniform in z.

Consider Fig 1.   Detectors are placed inside and outside of a cylindrically symmetric magnetic field volume.  In this example, the strongest field is near the center of the volume ... but this is not required in the following discussion. The field is uniform in  but not necessarily uniform in z.  The inner detectors are at 0 radius.  The outer detectors are placed at radius R.
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Figure 1:  A typical magnetic spectrometer

A particle is produced at the center of the detector and travels outwards.  It passes through the outer detectors at an angle ; which is the angle between the final momentum vector and a line drawn from the origin to the point where the particle hit the detector.

Similarly, is the angle between the final momentum vector and the initial trajectory of the particle.  The displacement of the particle’s track, measured on the outer detectors, is R  or approximately R ().  (The latter equality is strictly true only for the case where the magnetic field is uniform in z.  See below.)

Now consider a differential element of the magnetic field volume as shown in Fig 2.
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Fig. 2:  Particle trajectories through a differential element of the field volume

The particle receives an infinitesimal pt kick from the field element located at radius l.   We can calculate the kick using the equations of motions of a particle in a uniform field:
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where B is the component of the field that is perpendicular to the particles instantaneous direction of motion. Thus, assuming the field is constant inside the differential volume element, it is clear that d  =  / dl .  Strictly speaking, l is the path length along the particle trajectory and will differ from the radius, r, especially for low momentum particles or very strong magnetic fields.   dl is the differential path length which connects the incoming track with the outgoing track at the boundaries of the differential field volume.  It is a segment of a circle.    So,
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Using the law of sine’s, it is also easy to show that 
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and the total displacement of the track, from the infinite momentum ray, at radius R is  R().
These equations are correct in the limit of small angular deflections of the track and for high momentum particles.  They are only approximations in the case of large angular deflections and lower momentum particles.  But the equations show that there are well-defined relationships between and the integrals of the field. So a knowledge of and/oris equivalent to knowing the transverse component of the particles momentum in all cases.

These equations are also good approximations for high pt particles in the case where the B field is changing slowly in Z.   This is because both the Z component of the field and the R component of the field give a kick in the  direction. So a particle follows a helical trajectory where the radius of the helix changes slowly with Z.  This simple helical motion is only disrupted when the  component of the velocity builds up to an appreciable level and the Vx B  terms compete significantly with the VRx B and VZx B terms.  And since V = 0 at the origin, by definition, it takes a while for this velocity component to build up to an appreciable level.

The equations are correct in the general case of a cylindrically symmetric magnetic field with BR and BZ components, however, we must be careful to integrate over the component of the B field that is perpendicular to the particles instantaneous direction of motion.  Thus B is used in the equations above as a reminder of these general considerations.

Finally, I should note that andare the angles between vectors and I have not projected them into the ( r, z ) plane.  Some authors do this.

A More Rigorous Approach

There is a simple way to prove that Beta is proportional to Int(B.dl) using a  blackboard and finger physics.  You can also  show  that Alpha  is proportional  to  Int(B.l.dl) with this technique.

But I thought it would be fun to try to prove the case using analytic methods.  Starting  from the Lorentz force  equation, it is simple to show the following two relations.

The position vector is defined to be:

    R(s) =   R0(s) + s x t0 + Q/pc x INT{ds' x (s-s') x t(s') X B(s')}

and the tangent vector t is given by:

    t(s) =   t0 + Q/pc x INT{ds' t(s') X B(s') }

where  cap X means cross  product.   The "tangent vector" is shorthand for p-bar/p or  v-bar/v where p-bar  stands for the  vector P and p is its magnitude.

Now  take  the cross product   between  the initial  direction tangent vector and  the final direction tangent  vector to  define the angular shift between the initial and final directions:

    t0 X t(s) =   Q/pc x INT{ds' t0 X [t(s') X B(s')] }

and   note that t(s) X B(s)   is  what  we  normally  call B-perp, the component of   the field that  is perpendicular  to  the  direction of motion of the particle.

              =   Q/pc x INT{ds' t0 X B-perp}

Due to   the phi  symmetry of  our  field,  t0 (the  initial direction unit-vector) is perpendicular  to B-perp  to second  order and so  the magnitude of the cross  product is merely  B-perp. You will  note that the magnitude  of t0 X t(s) defines beta (I  stick  to this  notation, with apologies to Shiva and Alexi) and so if:

    sin(beta) =   Mag{ t0 X t(s) }

then

    beta =   Q/pc x Int{ds' B-perp}

QED.  This is  otherwise known as  Int(B.dl).  This conclusion is true for any phi symmetric field because both  the Z component of the field and the R component of the field  give kicks in the phi-hat direction. And it only  breaks  down when  the  velocity of the  particle becomes large in the phi-hat direction.  In this case the phi-hat component of the velocity  interacts with the Z  field (and R field)  yielding some strange focussing at low momentum in the CM.  In the MM, these effects tend to pull  the  muons off a  cone  of  constant theta.   But  these effects are  small at  energies  above 400   MeV or  so  and so  I  am comfortable neglecting them.

Next, take the cross product between t(s) and R(s).  This defines the angular displacement between the final tangent vector and a line drawn between the vertex and the point the particle hit the detector.   Be careful about the order of  the cross  products  and many terms will cancel:

     t(s) X R(s) =   Q/pc x Int{ds' x s' x [ t0 X [t(s') X B(s')] ]}

     + Q**2/(pc)**2 Int{ds" Int{ds' (s-s') [B-perp(s") X B-perp(s')]}}

I got lazy there at the end and identified t(s) X B(s) as B-perp.  The interesting thing about the second term is that it goes to zero in the case of  phi symmetry because  B-perp(s") and B-perp(s') point  in the same direction until the phi-hat velocity builds  up to an appreciable amount.  This term also goes to zero at large momentum.  Thus,

     t(s) X R(s) =   Q/pc x Int{ds' x s' x [ t0 X B-perp ] }

and if  you use all  the same arguments,  and limitations, noted above you will immediately recognize that

     sin(alpha) =   Mag{ t(s) X R(s) }

and

     alpha =   Q/(Rpc) x Int{B.l.dl}

Where R is the  magnitude of R(s-final), the  total distance along the path, or, to a good approximation  the straight line distance from the vertex to the hit on the detector.  QED II.

    This   establishes a direct relationship   between Beta (the angle between the  initial direction and the  final direction) and Int(B.dl). It also shows that Alpha (the angle between  the final direction and a line drawn between   the  vertex and  the  hit  on the detector)    is proportional to Int(B.l.dl).  Both   angle relationships are  valid to second order. Note that alpha depends on R and that R is constant on a cone of  constant theta, where theta  is  the emission  angle from the vertex  with respect  to the beamline.   To a  good approximation, our particles  are confined  to a  cone  of  constant  theta  and only the phi-hat velocity components work to pull trajectories off that cone.

    The utility of these angles is that  they are amenable to Feynman finger physics.  As such, I  like them.  It also  turns out that Alpha is what we  measure in the CM.   We  don't know the initial  direction vector and so we can only  measure the angle  between the track, as it goes through the  detector, and a line between  the vertex and the hit point.  Fortunately, this angle is proportional  to Int{B.l.dl} and we have a good spectrometer after all.

    I  also  like to  quote  alpha and beta   in the Muon spectrometer because they  tell a story about the  magnet.   One is proportional to B.dl and the  other to B.l.dl.  You would  be  surprised how different these are due to the large changes in the B field through the MM.  One emphasizes the front  of the spectrometer and  the other  emphasizes the back of the spectrometer.   In this capacity,  they are independent and useful information and  a  knowledge of both   improves our ability  to measure the momentum of particles inside the MM.

Another discussion

Let a particle traverse a  magnetic field  region.  Starting from  the Lorentz  force  equation:

      F = dP/dt = Ze/c ( V X B )

Integration of this equation along a path yields:

      t(L) =   t(0) + Ze/pc INT{ dl' t(l') X B(l') }

Cap X means cross product.  "t" is the tangent direction vector and it is  shorthand for v-bar/v; where  v-bar stands for the velocity vector V, and v is its magnitude.   The integrals are evaluated  from 0 to L, where L is equal to INT{ dl' } or equivalently L is the time-of-flight divided by the invariant velocity.

Since [ t(l) X B(l) ] is what we usually call B-perp (the component of the field that is   perpendicular to the   direction of motion  of the particle), we can write this in the more familiar form:

1>    t(L) =   t(0) + Ze/pc INT{B dl'}

It is interesting to note that the angle between the initial direction vector  and the final  direction vector  is  "gamma" and is  precisely defined by:

      ( 1 - cos(gamma) ) * 2  =  Magnitude[ Ze/pc INT{ B dl' } ]**2

or in the  small angle approximation  (magnitude of the vector implied below):

2>    gamma =  Ze/pc INT{ B dl' } 

Integrating  equation  1>  again,   and  interchanging  the  order  of integration yields the position vector R(L):

      R(L) =  R(0) + L t(0) + Ze/pc INT{ dl' (L-l') t(l') X B(l') }

or more colloquially:

3>    R(L) =  R(0) + L t(0) + Ze/pc [ L INT{ B dl'} - INT{ B l' dl'} ]

Using equations 1> and 3>,  it is easy to  show that the angle between the final direction  vector  and the vector defined by the initial and final points ( R(0) and R(L) ) is "alpha":

      ( R(L)-R(0) )**2 + L**2 - 2 L ( R(L)-R(0) ) cos(alpha) =  

                                 Magnitude[ Ze/pc INT{ B l' dl' } ]**2

or in the small angle approximation

4>    alpha L  =  Ze/pc INT{ B l' dl' }

Similarly, the displacement  of the track  from its initial  direction vector endpoint can be calculated using the angle "phi":

      ( R(L)-R(0) )**2 + L**2 - 2 L ( R(L)-R(0) ) cos(phi) =  

         Magnitude[ L Ze/pc INT{ B dl' } -  Ze/pc INT{ B l' dl' } ]**2 

so in the small angle approximation the displacement is:

5>    phi  L  =  L Ze/pc INT{ B dl' }  -  Ze/pc INT{ B l' dl' }  

Equations  1-5  form the     basis  for all   tracking  and   momentum reconstruction algorithms; either directly, or as sums and differences of these equations, or projected onto  detector planes.  Note that the magnitude of  the momentum  vector is  conserved  in a static magnetic field and so p has been placed outside the integrals ....  but this is true only for a  particle in a vacuum!   For particles traversing real detectors there will be multiple  coulomb scattering and the  momentum is progressively decreasing with each time  step.  Fortunately, MCS is not   difficult to calculate with  modern  computational methods and p (the magnitude of  P) can be  placed inside the integrals.  Then these equations are correct even with MCS.

Examples:  Consider measurements made  in an  apparatus where there is only one detector and  it is outside  the magnetic field region.  Only the final position  and direction of the  particle is  measured at the external  detector; the  initial  direction vector is   not known.  By substituting equation  1>  into 3>  we  can  derive an   equation  that includes only experimental data and no unknowns.

6>    R(L) =  R(0) + L t(L) - Ze/c INT{ 1/p B l' dl'} 

Note that alpha, in equation 4>, is the angle between (  R(L) - R(0) ) and L t(L).  This is the angle  between the final direction vector and a line  drawn  between  the vertex  and  the  "hit" on  the   external detector.  In real  applications, t(L) is  usually projected  into the (x,y) plane  and the (y,z) planes  yielding two parameter fits  to the momenta of tracks.

A  second  example: Equation  3>  is  the  defining  equation  for the "floating-wire" method where a wire under tension  is floated inside a magnet.  The deflection of the wire is proportional to the tension and current in the wire according to equation 3>.  However, the effects of MCS are not measured by this technique.

As a  final application  of  these equations, consider  the case where there are three detectors  in a magnetic field.   One before the field region, one in the middle, and one at  the end.  Further, suppose that these detectors  do not measure the angles   of the particles  as they pass through  the detectors  but only report   the position where  the track  passed  through  the detector   planes.   In this case  neither equations 1>  or 3> are helpful.  However,  equation 3> can be applied again to  a track traversing from  detector 1 to  detector  2 and then applied to the case of a track traversing  from detector 3 to detector 2  (in  the  reverse direction).   This   allows us  to  eliminate the direction vector at detector 2 and yields:

      R(3) - (1+L2/L1) R(2) + L2/L1 R(1)  =  

           Ze/pc INT(3,2){B l' dl'}  +  L2/L1 Ze/pc INT(1,2){B l' dl'}

This is the  expression for two times sagitta;  the displacement  of a track, at detector 2, from the infinite momentum  ray.  Note that this elegant definition is the distance between the "hit" on detector 2 and the mid point of a straight line drawn between the "hit" on detector 1 and the "hit" on detector three.  The difference between the integrals of B.l.dl and B.dl is twice the sagitta if  L1 is equal  to L2 and the bending power of the magnets is the same between detectors 1 and 2 and between  2 and 3.  In all  other  cases, the intuitive definition of sagitta (i.e.  projected onto detector 2)  is momentum dependent.  As a further complication, we cannot evaluate the integrals "in the reverse direction"  from which the particle  flies because the  effects of MCS are not time reversal invariant.  We can, however, rearrange terms and evaluate the integrals in the forward direction to find:

7>    R(3) - (1+L2/L1) R(2) + L2/L1 R(1)  =  

             L2 Ze/c INT(2,3){1/p B dl'} - Ze/c INT(2,3){1/p B l' dl'}  

                                  +  L2/L1 Ze/c INT(1,2){1/p B l' dl'}

Therefore, sagitta depends on knowing the integrals of B.dl and B.l.dl independently. 

Remember  that  B inside the integrals  really   means B-perp  and the integrals are vector equations.  This   makes it tedious to  calculate the integrals directly in  a tracking code  because B-perp needs to be evaluated at each  time step.  

Instead of calculating INT{B  dl} and INT{B  l  dl}, here is a  better idea.  Use a tracking code with a good B field map to simulate tracks. Then  use  the detector  "hits" to calculate   the field integrals via equations 1> or 6> or some variation on this theme.

For  example, the PHENIX  Central Magnet spectrometer tracks particles, which are outside  the magnetic  field region.   There is  no tracking before, or inside, the magnetic field region.  In particular, we don't know  t(0), the initial  direction  vector.  The experimental  data is R(L), R(0), and t(L).  Equation 6> tells us that

8>    (p(0)c/Ze) (R(L) - R(0) - L t(L))  = (-1) INT{ k(l) B l' dl'}

where k(l) is p(0)/p(l) (the normalized inverse momentum as a function of l which is changing due to the energy loss  of the particles in air and in the detectors).

Using simulated  tracks, it is therefore  a simple matter  to generate extensive tables of INT{ k(l) B l' dl'} for all possible paths through the magnet.

Equation 8 is also a very  good momentum reconstruction algorithm.  In practice, you can   solve 8> assuming  a high  momentum track in   the evaluation of INT{B  l' dl'} to get a  crude estimate of the  momentum and then iteratively search the  table of integrals  in a small window around this estimated momentum to get a better estimate of p(0).

Note  that  8> is  a   vector equations and  we  really  have to match magnitudes and directions.  In practice, we will have real data on the left hand side  of these  equations and  "mapped"  data on the  right; meaning that the equality won't be exact and  we have to find the best value of p(0) to minimize the vector residual.

The  solution  to  this minimization problem   is  left to the reader. However, the answer  is given as  follows: suppose  that you have  two vectors A, and B, and a scalar p.  p times A  is approximately B.  The best value for p is p = [ A DOT B ] / [  A DOT A ].   Where A DOT A is the dot product.

Note, also, that  the left-hand side  of  equation 8>  assumes we know R(0), the vertex  location.  If this  information is  unknown, then we must   assume  the   vertex     location   because the   problem    is under-constrained.  There are six unknown parameters at the vertex and only four  parameters are measured  by  a detector  outside the  field region.  This comment makes it clear that we can't find the vertex for a single track  using  a  single tracking  station.  We  need  several tracking stations inside the magnetic  field, multiple tracks to  show that pt is  conserved,  or multiple tracks   in combination with  high quality time-of-flight information to  reconstruct a pair mass.   This is important for  Lambda decays and  particles  with significant c-tau decay lengths.

OK, now what the  bloody  heck does all this   have to do  with magnet mapping?

Consider the PHENIX  Central Magnet.  You  need to run a good tracking code with a high-resolution field map.  (e.g. PISA coupled with Orrin's 1 cm by 1 cm map of the CM, for example.  The map  is available on the PHENIX WWW homepage   under PHENIX/magnet/maps.)  This will give   you "perfect" data to save.  Next, you can bugger the magnetic field (with "bfield_shift.f" available at the  same location) and recalculate  the data  assuming the field map was  accidentally shifted a few millimeters by some sleepy graduate student.  Do this for the same vector momentum particle in both cases.

Next, put the  perfect data on the left-hand side of equation 8>, the buggered map data on the right,  and calculate p(0) to  see how much it has changed from the  "perfect" case.  I have  finessed the fact that you should  re-arrange 8>  to solve for   p(0) and  then take  the dot product between "buggered" and "perfect" data to get the best estimate of p(0).

For the Central Magnet the master equation becomes:

Equation CM>

  p-new      [R(L) - R(0) - L" t(L)]dat DOT [R(L) - R(0) - L" t(L)]map 

  ------  =  ---------------------------------------------------------

  p-map      [R(L) - R(0) - L" t(L)]dat DOT [R(L) - R(0) - L" t(L)]dat 

In  magnetic   field mapper simulations,  [ ]map   means to use values derived from the buggered map studies.  [ ]dat  means to use "perfect" data from a simulation without artificial errors.   If you want to use this  master  equation  as a  momentum  reconstruction  algorithm then [ ]map means to use values  derived from the  best available field map   and [ ]dat means to use real experimental data (i.e. detector "hits").

However, note that L" is L-map in all cases.  Most spectrometers don't measure L (except through time of  flight studies) and  so you have to use  the  value  estimated  from the simulations   as  input to  these equations.  This is  a subtle,  not very  big effect,  but the correct imitation of the real world.

For  the PHENIX  Muon Magnet mapper   simulation you could use  either equations 1> or 3> to derive

Equation MM1> 

  p-new      [ t(L) - t(0) ]dat DOT [ t(L) - t(0) ]map 

  ------  =  -----------------------------------------

  p-map      [ t(L) - t(0) ]dat DOT [ t(L) - t(0) ]dat 

or MM2>

  p-new      [R(L) - R(0) - L" t(0)]dat DOT [R(L) - R(0) - L" t(0)]map 

  ------  =  ---------------------------------------------------------

  p-map      [R(L) - R(0) - L" t(0)]dat DOT [R(L) - R(0) - L" t(0)]dat 

Remember that t(0) is V-vector(0)/v-scalar(0) and so it represents the initial direction  vector  and R(0)  is  the location  of the starting point  on tracking station number  one in the MM.   

These equations give  you a quantitative way  to understand the effect of systematic errors on the tracking resolution.   You can explore the errors  introduced by    grid sizes  in  the maps,   rotations of  the measuring devices, or displacements  of the measuring  devices.  All of this is  easier to  do  than to describe.   You  should be able  to implement these methods with existing codes  fairly easily.  The hard part is to visualize the data after you get it!

Finally,   one last example. For  momentum  reconstruction in the Muon Magnet, you might want to choose equation 7>, instead, because it uses the hits in all three  detector stations simultaneously and eliminates the lower quality direction vector information needed  in MM1 and MM2.

Re-arranging 7 and solving for the best estimate of p(0) yields:

Equation MM3>

  p-est     [ R(3) - (1+L2/L1) R(2) + (L2/L1) R(1) ]dat  DOT  [...]map 

  -----  =  ---------------------------------------------------------- 

  p-map                     [...]dat  DOT  [...]dat

Equation MM3> could be  used for mapper  studies, too, but it is based on an unusual combination of integral data rather than B.dl or B.l.dl, alone.  There is nothing wrong with this except that  you have to know what you are  doing in relation  to what  you actually  measure in the magnet map.

Equation  MM3> is a  very  good algorithm for momentum reconstruction, however,   because it over-constrains   the  solution for the momentum. R(1), R(2), R(3) represent 6 measured parameters  and there are only 5 unknowns for the track as it leave station one.
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