

ExB Notes and a Discussion about the Magnetic Field Shape Distortions

Jim Thomas & Magnus Mager

GSI & LBL & TUD & CERN 3 rd March 2010

also see: <http://rnc.lbl.gov/~jhthomas/public/ALICE/ExBEquations.pdf> and: /afs/cern.ch/user/j/jhthomas/public/AliDistort/AliceDistortions.cxx

R-Phi and Radial ExB Shape Distortions

- **100 gauss B^r fluctuations**
- **50 gauss B fluctuations**
- **The tracks will suffer distortions in the R-Phi direction as well as in the Radial direction**

- **Note that** $\omega\tau$ **is a tensor and so the components of in the R-Phi and Radial directions can be different**
- **We can measure these components for Ne/CO² /N2 with the lasers &/or GG scan**

RERKELEY LAR

LAWRENCE BERKELEY NATIONAL LABORATORY

 -0.05 $L_{0.1}$ -0.15 $-1.0.2$ -0.25 -0.3 **AliTPCExBExact** Thu Feb 25 20:00:07 2010

Simulated ExB Shape distortions in the TPC

The Magnetic Field is non-uniform, shifts the apparent vertex and minimizing residuals doesn't give much guidance

Distortion Equations – (see Blum & Rolandi)

Solve:

$$
m \frac{d\overline{u}}{dt} = e \overline{E} + e \left[\overline{u} \times \overline{B} \right] - K \overline{u}
$$

substituting:

Langevin Equation with "Friction"

$$
\tau = \frac{m}{K}, \quad \omega = \frac{e}{m} | \overline{B} | , \quad \mu = \frac{e}{m} \tau , \quad \text{and} \quad \hat{E} = \frac{\overline{E}}{|\overline{E}|}
$$
\nsubject to the

\nsteady state

\n
$$
\frac{d\overline{u}}{dt} = 0 \qquad \text{yields}
$$

$$
\overline{u} = \frac{\mu |\overline{E}|}{(1 + \omega^2 \tau^2)} \left(\hat{E} + \omega \tau \left[\hat{E} \times \hat{B} \right] + \omega^2 \tau^2 \left(\hat{E} \bullet \hat{B} \right) \hat{B} \right)
$$

where B-hat is a unit vector pointing in the direction of B.

$$
u_x = \frac{\mu |E|}{(1 + \omega^2 \tau^2)} \left(\hat{E}_x + \omega \tau \left(\hat{E}_y \hat{B}_z - \hat{E}_z \hat{B}_y \right) + \omega^2 \tau^2 \hat{B}_x \right)
$$

Electric field strength cancels out

$$
\delta_x = \int \frac{u_x}{u_z} dz
$$

$$
\delta_y = \int \frac{u_y}{u_z} dz
$$

Taking the ratio and expanding the denominator yields exact equations to 2nd order

S_x =
$$
\int \frac{u_x}{u_z} dz
$$

\n**6**_y = $\int \frac{u_y}{u_z} dz$

\n**Taking the ratio and expanding the denominator yields exact equations to 2nd order**

\n $\delta_x = \frac{1}{(1 + \omega^2 \tau^2)} \int \frac{E_x}{E_z} dz + \frac{\omega \tau}{(1 + \omega^2 \tau^2)} \int \frac{E_y}{E_z} dz - \frac{\omega \tau}{(1 + \omega^2 \tau^2)} \int \frac{B_y}{B_z} dz + \frac{\omega^2 \tau^2}{(1 + \omega^2 \tau^2)} \int \frac{B_x}{B_z} dz$

\n**Simple linear equations**

\n $\delta_y = \frac{1}{(1 + \omega^2 \tau^2)} \int \frac{E_y}{E_z} dz - \frac{\omega \tau}{(1 + \omega^2 \tau^2)} \int \frac{E_x}{E_z} dz + \frac{\omega \tau}{(1 + \omega^2 \tau^2)} \int \frac{B_x}{B_z} dz + \frac{\omega^2 \tau^2}{(1 + \omega^2 \tau^2)} \int \frac{B_y}{B_z} dz$

\n**No approximations required if we write** $\int (\mathbf{B_x} / \mathbf{B_z}) dz$ **instead of** $\int \mathbf{B_x} dz / \int \mathbf{B_z} dz$

Simple linear equations

$$
\delta_{y} = \frac{1}{(1+\omega^{2}\tau^{2})}\int_{E_{z}}^{E_{y}}dz - \frac{\omega\tau}{(1+\omega^{2}\tau^{2})}\int_{E_{z}}^{E_{x}}dz + \frac{\omega\tau}{(1+\omega^{2}\tau^{2})}\int_{B_{z}}^{B_{x}}dz + \frac{\omega^{2}\tau^{2}}{(1+\omega^{2}\tau^{2})}\int_{B_{z}}^{B_{y}}dz
$$

No approximations required if we write $\int (\mathbf{B_x}/\mathbf{B_z})$

Separable equations, additive in all terms

$$
\begin{pmatrix}\n\delta_{xE} \\
\delta_{yE}\n\end{pmatrix} = \begin{pmatrix}\nc_0 & c_1 \\
-c_1 & c_0\n\end{pmatrix} \begin{pmatrix}\n\frac{E_x}{E_y} dz \\
\frac{E_y}{E_z} dz\n\end{pmatrix}
$$
\nForm is very similar to a rotation matrix, with constants of the motion\n
$$
c_0 = \frac{1}{(1 + T_2^2 \omega^2 \tau^2)}, \quad c_1 = \frac{T_1 \omega \tau}{(1 + T_1^2 \omega^2 \tau^2)}, \quad \text{and} \quad c_2 = \frac{T_2^2 \omega^2 \tau^2}{(1 + T_2^2 \omega^2 \tau^2)}
$$
\nwhere I have taken the liberty of adding the two tensor terms T_1 and T_2 from the microscopic theory in Blum and Rolandi's book\n
$$
\omega \tau = -10.0 * BField[kGauss] * \frac{Drift \, Velocity[m/\text{use}]}{Electric \, Drift \, Field \, strength \, [V/cm]}
$$
\nFor practical applications, the integrals can be pre-computed, which is very fast, yet constants of motion are decoupled and can be updated run by run (or event by event)

Form is very similar to a rotation matrix, with constants of the motion

$$
c_0 = \frac{1}{(1 + T_2^2 \omega^2 \tau^2)}, \quad c_1 = \frac{T_1 \omega \tau}{(1 + T_1^2 \omega^2 \tau^2)}, \quad \text{and} \quad c_2 = \frac{T_2^2 \omega^2 \tau^2}{(1 + T_2^2 \omega^2 \tau^2)}
$$

where I have taken the liberty of adding the two tensor terms T₁ and T₂ from the microscopic theory in Blum and Rolandi's book

$$
\omega \tau = -10.0 * BField[kGauss] * \frac{Drift \, Velocity[cm/\mu sec]}{Electric \, Drift \, Field \, Strength \, [V/cm]}
$$

For practical applications, the integrals can be pre-computed, which is very fast, yet

- **E and B field distortions can be calculated separately and summed**
	- **No cross terms and no coupling of E and B fields**
- **Integrals such as (B^x /B^z) dz are easy to compute, so why not?**
	- **Makes the difference between a 1st and 2nd order calculation**
- **2 nd order calculations are very good**
	- **B field shape distortions are accurate to 200 m at 1st order, 4 m at 2nd**
	- **Electric field distortions, and their errors, will be much smaller unless something really bad happens to the field cage**
- **The tensor terms, T¹ and T² , can be measured**
	- $-$ In methane gases, they have been measured to be $T_1 = 1.34$, $T_2 = 1.11$
	- **Which if the same holds true in Ne, could lead to 20% errors … or ~2 mm**
	- **Tensor terms are unknown (as far as I know) for Ne based gas mixtures**
- **We have taken the liberty of asking Ruben S. to update AliMagF**
	- **Precompute the B field integrals (B^x /B^z) dz and put them in AliMagF**
	- **Clean up some other glitches**

backup slides

Ruben Integrals will yield very compact code

```
void AliceDistortions::UndoExBShapeDistortion( const Float_t x[], Float_t Xprime )
{
```

```
Double_t BIntegralStart[3], BIntegralEnd[3] , xStart[3], xEnd[3] ;
Double_t BxOverBzIntegral, ByOverBzIntegral, Denominator ;
Int \t xStart[0] = x[0] ; xStart[1] = x[1] ; xStart[2] = x[2] ;
xEnd[0] = x[0] ; xEnd[1] = x[1] ; xEnd[2] = TPCZ0 ;
AliceMagField -> GetTPCnewInt(xStart, BIntegralStart) ;
AliceMagField -> GetTPCnewInt(xEnd , BIntegralEnd ) ;
BxOverBzIntegral = (BIntegralStart[0] - BIntegralEnd[0]); 
ByOverBzIntegral = (BIntegralStart[1] - BIntegralEnd[1]); 
Xprime[0] += ( Const_2 * BxOverBzIntegral - Const_1 * ByOverBzIntegral ) ;
Xprime[1] += ( Const_2 * ByOverBzIntegral + Const_1 * BxOverBzIntegral ) ;
Xprime[2] += 0.0 ;
```
}

// Const_1 = OmegaTau/(1+OmegaTau2) and Const_2 = OmegaTau**2/(1+OmegaTau**2)**

