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The Langevin equation for the drift velocity, 𝑢𝑢�⃑ , is given in Blum and Rolandi: 

𝑢𝑢�⃑  =  𝜇𝜇 �𝐸𝐸�⃑ �
(1+𝜔𝜔2𝜏𝜏2)

 � 𝐸𝐸�  +  𝜔𝜔𝜏𝜏 �𝐸𝐸� × 𝐵𝐵��  +  𝜔𝜔2𝜏𝜏2 �𝐸𝐸� ∙ 𝐵𝐵�� 𝐵𝐵�   �  

where  𝐸𝐸� = 𝐸𝐸�⃑

�𝐸𝐸�⃑ �
,   𝐵𝐵� = 𝐵𝐵�⃑

�𝐵𝐵�⃑ �
      The components of the Langevin equation are: 

𝑢𝑢𝑥𝑥   =   𝜇𝜇�𝐸𝐸�⃑ �
(1+𝜔𝜔2𝜏𝜏2)

 � 𝐸𝐸�𝑥𝑥  +  𝜔𝜔𝜏𝜏 �𝐸𝐸�𝑦𝑦𝐵𝐵�𝑧𝑧 − 𝐸𝐸�𝑧𝑧𝐵𝐵�𝑦𝑦�  +  𝜔𝜔2𝜏𝜏2 �𝐸𝐸� ∙ 𝐵𝐵�� 𝐵𝐵�𝑥𝑥   �  

𝑢𝑢𝑦𝑦   =   𝜇𝜇 �𝐸𝐸�⃑ �
(1+𝜔𝜔2𝜏𝜏2)

 � 𝐸𝐸�𝑦𝑦  +  𝜔𝜔𝜏𝜏 �𝐸𝐸�𝑧𝑧𝐵𝐵�𝑥𝑥  − 𝐸𝐸�𝑥𝑥𝐵𝐵�𝑧𝑧�  +  𝜔𝜔2𝜏𝜏2 �𝐸𝐸� ∙ 𝐵𝐵�� 𝐵𝐵�𝑦𝑦   �  

𝑢𝑢𝑧𝑧   =   𝜇𝜇 �𝐸𝐸�⃑ �
(1+𝜔𝜔2𝜏𝜏2)

 � 𝐸𝐸�𝑧𝑧  +  𝜔𝜔𝜏𝜏 �𝐸𝐸�𝑥𝑥𝐵𝐵�𝑦𝑦 − 𝐸𝐸�𝑦𝑦𝐵𝐵�𝑥𝑥�  +  𝜔𝜔2𝜏𝜏2 �𝐸𝐸� ∙ 𝐵𝐵�� 𝐵𝐵�𝑧𝑧   �  

Let’s assume that the E and B fields are nearly parallel and have principle 
components that lie along the Z axis with  �𝐸𝐸�⃑ � ≈ 𝐸𝐸0  and  �𝐵𝐵�⃑ � ≈ 𝐵𝐵0.  𝐵𝐵0 could be 
the strength of the field at the center of the magnet and 𝐸𝐸0 could be the drift field in 
the TPC. To be precise, let’s assume small perturbations of the fields and define: 

𝐸𝐸�⃑ = �𝐸𝐸𝑥𝑥 ,𝐸𝐸𝑦𝑦 ,𝐸𝐸0 − 𝛿𝛿𝐸𝐸𝑧𝑧�,              𝐵𝐵�⃑ = �𝐵𝐵𝑥𝑥 ,𝐵𝐵𝑦𝑦 ,𝐵𝐵0 − 𝛿𝛿𝐵𝐵𝑧𝑧�  

so that  𝐵𝐵�𝑥𝑥  =    𝐵𝐵𝑥𝑥

��𝐵𝐵𝑥𝑥2+ 𝐵𝐵𝑦𝑦2+𝛿𝛿𝐵𝐵𝑧𝑧2−2𝐵𝐵0𝛿𝛿𝐵𝐵𝑧𝑧+𝐵𝐵0
2�

       but now define     𝐵𝐵�𝑥𝑥 = 𝐵𝐵𝑥𝑥
𝐵𝐵0

      then 

following the expansion to 3rd order, but keeping only 2nd order terms yields: 

𝐵𝐵�𝑥𝑥  =  𝐵𝐵�𝑥𝑥  �1 + 𝛿𝛿𝐵𝐵�𝑧𝑧 + 𝛿𝛿𝐵𝐵�𝑧𝑧2 −
1
2
𝐵𝐵�𝑥𝑥2 −  1

2
𝐵𝐵�𝑦𝑦2�  =   𝐵𝐵𝑥𝑥

𝐵𝐵𝑧𝑧
 − 1

2
𝐵𝐵�𝑥𝑥3 −  1

2
 𝐵𝐵�𝑥𝑥𝐵𝐵�𝑦𝑦2  

and neglecting the 3rd order terms gives a very simple result: 

𝐵𝐵�𝑥𝑥  = 𝐵𝐵𝑥𝑥
𝐵𝐵𝑧𝑧

     and    𝐵𝐵�𝑦𝑦  = 𝐵𝐵𝑦𝑦
𝐵𝐵𝑧𝑧

     but  also     𝐸𝐸�𝑥𝑥  = 𝐸𝐸𝑥𝑥
𝐸𝐸𝑧𝑧

     and    𝐸𝐸�𝑦𝑦  = 𝐸𝐸𝑦𝑦
𝐸𝐸𝑧𝑧

    with 

𝐵𝐵�𝑧𝑧  = �1 − 1
2
𝐵𝐵�𝑥𝑥2 −  1

2
𝐵𝐵�𝑦𝑦2�   and   𝐸𝐸�𝑧𝑧  = �1 − 1

2
𝐸𝐸�𝑥𝑥2 −  1

2
𝐸𝐸�𝑦𝑦2�.      

This means that  

𝐸𝐸� ∙ 𝐵𝐵�  =  � 1 + 𝐸𝐸�𝑥𝑥𝐵𝐵�𝑥𝑥 + 𝐸𝐸�𝑦𝑦𝐵𝐵�𝑦𝑦 −  1
2
𝐸𝐸�𝑥𝑥2 −  1

2
𝐸𝐸�𝑦𝑦2 −  1

2
𝐵𝐵�𝑥𝑥2 −  1

2
𝐵𝐵�𝑦𝑦2�   



Continuing the algebra and neglecting the 3rd order terms, we find that 

�𝐸𝐸� ∙ 𝐵𝐵��𝐵𝐵�𝑥𝑥  = 𝐵𝐵�𝑥𝑥    and   �𝐸𝐸� ∙ 𝐵𝐵��𝐵𝐵�𝑦𝑦  = 𝐵𝐵�𝑦𝑦    while   

�𝐸𝐸� ∙ 𝐵𝐵��𝐵𝐵�𝑧𝑧  =  � 1 + 𝐸𝐸�𝑥𝑥𝐵𝐵�𝑥𝑥 + 𝐸𝐸�𝑦𝑦𝐵𝐵�𝑦𝑦 −  1
2
𝐸𝐸�𝑥𝑥2 −  1

2
𝐸𝐸�𝑦𝑦2 −  𝐵𝐵�𝑥𝑥2 −  𝐵𝐵�𝑦𝑦2 �       

These equations are exact through 2nd order in all terms.   

Returning to the Langevin equations, we find:  
𝑢𝑢𝑥𝑥
𝑢𝑢𝑧𝑧

 =    � 𝐸𝐸�𝑥𝑥  + 𝜔𝜔𝜏𝜏  �𝐸𝐸�𝑦𝑦𝐵𝐵�𝑧𝑧−𝐸𝐸�𝑧𝑧𝐵𝐵�𝑦𝑦 � + 𝜔𝜔2𝜏𝜏2 𝐵𝐵�𝑥𝑥   �
� 𝐸𝐸�𝑧𝑧  + 𝜔𝜔𝜏𝜏  �𝐸𝐸�𝑥𝑥𝐵𝐵�𝑦𝑦−𝐸𝐸�𝑦𝑦𝐵𝐵�𝑥𝑥� + 𝜔𝜔2𝜏𝜏2 (𝐸𝐸�∙𝐵𝐵�)𝐵𝐵�𝑧𝑧   �

     or equivalently 

𝑢𝑢𝑥𝑥
𝑢𝑢𝑧𝑧

 =    
� 𝐸𝐸𝑥𝑥𝐸𝐸𝑧𝑧

 + 𝜔𝜔𝜏𝜏  � 
𝐸𝐸𝑦𝑦
𝐸𝐸𝑧𝑧

 − 
𝐵𝐵𝑦𝑦
 𝐸𝐸𝑧𝑧

 � + 𝜔𝜔2𝜏𝜏2 𝐵𝐵𝑥𝑥𝐵𝐵𝑧𝑧
  �

� �1−𝑂𝑂(2)� + 𝜔𝜔𝜏𝜏  𝑂𝑂(2) + 𝜔𝜔2𝜏𝜏2 �1+𝑂𝑂(2)�  �
  

Note that the second order terms in the denominator will not survive the binomial 
expansion, because when they are brought to the numerator, they become 3rd order 
terms which we have agreed to neglect. Thus, the complete 2nd order equations are: 

𝑢𝑢𝑥𝑥
𝑢𝑢𝑧𝑧

 =  1
(1+𝜔𝜔2𝜏𝜏2) 𝐸𝐸𝑥𝑥

𝐸𝐸𝑧𝑧
 +  𝜔𝜔𝜏𝜏

(1+𝜔𝜔2𝜏𝜏2) 𝐸𝐸𝑦𝑦
𝐸𝐸𝑧𝑧
−  𝜔𝜔𝜏𝜏

(1+𝜔𝜔2𝜏𝜏2) 𝐵𝐵𝑦𝑦
 𝐸𝐸𝑧𝑧

 +  𝜔𝜔2𝜏𝜏2

(1+𝜔𝜔2𝜏𝜏2) 𝐵𝐵𝑥𝑥
𝐵𝐵𝑧𝑧

   

𝑢𝑢𝑦𝑦
𝑢𝑢𝑧𝑧

 =  1
(1+𝜔𝜔2𝜏𝜏2) 𝐸𝐸𝑦𝑦

𝐸𝐸𝑧𝑧
 −  𝜔𝜔𝜏𝜏

(1+𝜔𝜔2𝜏𝜏2) 𝐸𝐸𝑥𝑥
𝐸𝐸𝑧𝑧

+  𝜔𝜔𝜏𝜏
(1+𝜔𝜔2𝜏𝜏2) 𝐵𝐵𝑥𝑥

𝐵𝐵𝑧𝑧
 +  𝜔𝜔2𝜏𝜏2

(1+𝜔𝜔2𝜏𝜏2) 𝐵𝐵𝑦𝑦
 𝐸𝐸𝑧𝑧

  

In a similar manner, we can evaluate the z component of the Langevin equation: 
𝑢𝑢𝑧𝑧
𝑢𝑢0

 =  1 −  1
2
�𝐸𝐸�𝑥𝑥2 + 𝐸𝐸�𝑦𝑦2� +  𝜔𝜔𝜏𝜏

(1+𝜔𝜔2𝜏𝜏2) �𝐸𝐸�𝑥𝑥𝐵𝐵�𝑦𝑦 − 𝐸𝐸�𝑦𝑦𝐵𝐵�𝑥𝑥�  +  𝜔𝜔2𝜏𝜏2

(1+𝜔𝜔2𝜏𝜏2) � 𝐸𝐸�𝑥𝑥𝐵𝐵�𝑥𝑥 +  𝐸𝐸�𝑦𝑦𝐵𝐵�𝑦𝑦 −  𝐵𝐵�𝑥𝑥2 −  𝐵𝐵�𝑦𝑦2�  

where u0 is the nominal drift velocity in the undistorted drift field,  �𝐸𝐸�⃑ �  =  𝐸𝐸0, and  
up to first order terms we find that the z component of the velocity is unperturbed. 

Strictly speaking, these equations define the velocity of a drifting electron in nearly 
parallel E and B fields.  In order to calculate the deviation of the electron away 
from a straight line path through these fields (i.e. the distortion in the transverse 
plane), these equations should be integrated over z.   

For example, the distortions in the transverse plane are: 

𝛿𝛿𝑥𝑥 = ∫  𝑢𝑢𝑥𝑥
𝑢𝑢𝑧𝑧

 𝑑𝑑𝑧𝑧,    𝛿𝛿𝑦𝑦 = ∫  𝑢𝑢𝑦𝑦
𝑢𝑢𝑧𝑧

 𝑑𝑑𝑧𝑧   

and in the z direction the distortion is  𝛿𝛿𝑧𝑧 = � 𝑍𝑍𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 −  ∫  𝑢𝑢𝑧𝑧
𝑢𝑢0

 𝑑𝑑𝑧𝑧�.  



Finally, lets simplify the notation, and define three universal constants 

c0 = 1
(1+𝜔𝜔2𝜏𝜏2)

 , c1 = 𝜔𝜔𝜏𝜏
(1+𝜔𝜔2𝜏𝜏2)

, and  c2 = 𝜔𝜔2𝜏𝜏2

(1+𝜔𝜔2𝜏𝜏2)
   in order to give: 

The complete 2nd order distortion equations in the transverse plane 

𝛿𝛿𝑥𝑥 =  c0  ∫ 𝐸𝐸𝑥𝑥
𝐸𝐸𝑧𝑧

 𝑑𝑑𝑧𝑧  +  c1 ∫
𝐸𝐸𝑦𝑦
𝐸𝐸𝑧𝑧

 𝑑𝑑𝑧𝑧  −  c1 ∫
𝐵𝐵𝑦𝑦
𝐵𝐵𝑧𝑧

 𝑑𝑑𝑧𝑧   +  c2 ∫
𝐵𝐵𝑥𝑥
𝐵𝐵𝑧𝑧

 𝑑𝑑𝑧𝑧  

𝛿𝛿𝑦𝑦 =  c0  ∫
𝐸𝐸𝑦𝑦
𝐸𝐸𝑧𝑧

 𝑑𝑑𝑧𝑧  −  c1 ∫
𝐸𝐸𝑥𝑥
𝐸𝐸𝑧𝑧

 𝑑𝑑𝑧𝑧  +  c1 ∫
𝐵𝐵𝑥𝑥
𝐵𝐵𝑧𝑧

 𝑑𝑑𝑧𝑧   +  c2 ∫
𝐵𝐵𝑦𝑦
𝐵𝐵𝑧𝑧

 𝑑𝑑𝑧𝑧  

and the complete 2nd order distortion equation in the z direction 

𝛿𝛿𝑧𝑧  =  −  ∫
𝐸𝐸𝑥𝑥2+ 𝐸𝐸𝑦𝑦2

2𝐸𝐸𝑧𝑧2
 𝑑𝑑𝑧𝑧 +  c1 ∫

𝐸𝐸𝑥𝑥𝐵𝐵𝑦𝑦− 𝐸𝐸𝑦𝑦𝐵𝐵𝑥𝑥
𝐸𝐸𝑧𝑧𝐵𝐵𝑧𝑧

 𝑑𝑑𝑧𝑧  +  c2  ∫ �
𝐸𝐸𝑥𝑥𝐵𝐵𝑥𝑥+𝐸𝐸𝑦𝑦𝐵𝐵𝑦𝑦

𝐸𝐸𝑧𝑧𝐵𝐵𝑧𝑧
− 𝐵𝐵𝑥𝑥2+𝐵𝐵𝑦𝑦2

𝐵𝐵𝑧𝑧2
� 𝑑𝑑𝑧𝑧  

Note that it is important to use 𝐸𝐸𝑧𝑧  and 𝐵𝐵𝑧𝑧  in the denominator of each term, above, 
and not 𝐸𝐸0 and 𝐵𝐵0.  If we were to use 𝐸𝐸0 and 𝐵𝐵0 we would be wrong by terms at 
the 2nd order for the corrections in the transverse plane. 

It is nice to see that the distortion equations in the transverse plane are linear first 
order equations so that it is possible to calculate each source of distortion 
independently.  Each perturbation can be handled as a separate calculation and 
added perturbatively  to the sum of all the other distortions.  Only the distortion in 
the z direction involves mixed fields, and this only happens at 2nd order. 

The distortions in the transverse plane are separable, and by looking at the E field 
or B field distortions independently we find a formulation of these equations that 
looks like a rotation matrix.  For example: 

�
𝛿𝛿𝑥𝑥𝐸𝐸
𝛿𝛿𝑦𝑦𝐸𝐸

�  =  �
    c0 c1 
−c1 c0 �  �

∫ 𝐸𝐸𝑥𝑥
𝐸𝐸𝑧𝑧

 𝑑𝑑𝑧𝑧

∫
𝐸𝐸𝑦𝑦
𝐸𝐸𝑧𝑧

 𝑑𝑑𝑧𝑧
�       and        �

𝛿𝛿𝑥𝑥𝐵𝐵
𝛿𝛿𝑦𝑦𝐵𝐵

�  =  �
 c2 −c1
 c1    c2

�  �
∫ 𝐵𝐵𝑥𝑥
𝐵𝐵𝑧𝑧

 𝑑𝑑𝑧𝑧

∫
𝐵𝐵𝑦𝑦
𝐵𝐵𝑧𝑧

 𝑑𝑑𝑧𝑧
� 

The matrix equations, above, also work in cylindrical coordinates if you map x⇒r, 
y⇒φ, and δx⇒δr, δy⇒rδφ. 

A trivial example of the use of these matrix equations is to calculate the distortion 
due to a misalignment between the E and B fields.  Suppose that the fields are not 



parallel but are twisted by a small angle θ and assume that the E field lies precisely 
on the Z axis as is the case for the TPC.  In this example, we find: 

�
𝛿𝛿𝑥𝑥
𝛿𝛿𝑦𝑦
�  =  �

 c2 −c1
 c1    c2

�  � 
𝜃𝜃𝑥𝑥   𝑍𝑍𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  
𝜃𝜃𝑦𝑦   𝑍𝑍𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  � 

How good are the 1st and 2nd order equations?  Typically, they are very good.  For 
example, consider the magnetic field inside the ALICE TPC.  The B field 
fluctuations are fairly large but do not exceed ±100 gauss in a 5000 gauss field.  To 
be precise, the largest radial components of the field are ±100 gauss at the outer 
radius of the TPC.  The φ components of the field are ±50 gauss, and the z 
component of the field runs from a low of 4900 gauss to a high of 5050 gauss.  So 
the B field variations can be as large as 2% giving rise to 1 cm scale distortions.  
This means that a 1 cm distortion can be calculated, in first order, to a precision of 
200 µm and the 2nd order terms should be good to 4 µm.  In comparison, it rarely 
happens that E field fluctuations are so large in a TPC.  Even an electrical short 
between two strips in the field cage, which is about the worst thing that can 
happen, will introduce ~1% field gradients.  Thus, the E field and B field 
distortions calculated to 2nd order are good enough for even the most precise work. 

The only remaining question is whether the Langevin equation is a complete 
description of the microscopic physics, and whether the constants c𝑑𝑑  are correct as 
written above.  The answer is that the Langevin equation is, in fact, the governing 
equation if you update the values of the constants c𝑑𝑑  … I won’t go into the details 
here, but the arguments  are given in Blum, Riegler and Rolandi sections 2.3.3 and 
2.4.4.  They show that the Langevin equation is valid but the constants of the 
motion need to be updated because in the full microscopic theory, the drift velocity 
is a tensor and the drift velocities in the transverse plane are slightly different than 
the drift velocity along the z axis.  To make a long story short, they show that the 
constants of motion should be written in the following way: 

c0
′ = 1

�1+𝑇𝑇2
2𝜔𝜔2𝜏𝜏2�

 , c1
′ = 𝑇𝑇1𝜔𝜔𝜏𝜏

�1+𝑇𝑇1
2𝜔𝜔2𝜏𝜏2�

,    and    c2
′ = 𝑇𝑇2

2𝜔𝜔2𝜏𝜏2

�1+𝑇𝑇2
2𝜔𝜔2𝜏𝜏2�

  

where T1 and T2 are the modifiers to the distortion equations due to the tensor 
terms in the drift velocity.  Rolandi et al. have measured these tensor terms in P9 
gas with a small test chamber and found T1 = 1.34 and T2 = 1.11 while STAR has 
measured them to be T1 = 1.36 and T2 = 1.11 in P10 gas.  I am not aware of anyone 



measuring these tensor terms for Neon based gases and so they will have to be 
derived from the data.  The best way to do this is to work with a known distortion 
and to try to remove it from the data.  It is possible to do this with electric field 
distortions, alone, because there are only two unknown tensor terms and they are 
both used in the E field distortion matrices.  A gating grid voltage scan might be a 
good way to do this.  If a known B field distortion can be found, the results of the 
E field fit can be tested for consistency because the same tensor terms appear in the 
B field distortion matrices. 

Conclusions: 

Distortions in the transverse plane are accurately modeled to 2nd order using the 
following equations: 
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The tensor terms can be measured by fitting the constants of motion, c𝑑𝑑 , to real 
data.  Thereafter, all other distortions can be calculated by using the following 
form for the constants of motion (dropping the prime notation): 
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with 

𝜔𝜔𝜏𝜏 =  −10.0 ∗ 𝐵𝐵𝐵𝐵𝑑𝑑𝐵𝐵𝐵𝐵𝑑𝑑[𝑘𝑘𝑘𝑘𝑘𝑘𝑢𝑢𝑘𝑘𝑘𝑘] ∗ 𝐷𝐷𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  𝑉𝑉𝐵𝐵𝐵𝐵𝑉𝑉𝑉𝑉𝑑𝑑𝑑𝑑𝑦𝑦 [𝑉𝑉𝑐𝑐 /𝜇𝜇sec ]
𝐸𝐸𝐵𝐵𝐵𝐵𝑉𝑉𝑑𝑑𝑑𝑑𝑑𝑑𝑉𝑉  𝐷𝐷𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  𝐵𝐵𝑑𝑑𝐵𝐵𝐵𝐵𝑑𝑑  𝑆𝑆𝑑𝑑𝑑𝑑𝐵𝐵𝑆𝑆𝑆𝑆𝑑𝑑 ℎ  [𝑉𝑉/𝑉𝑉𝑐𝑐 ]  

Note that ωτ is a signed quantity and the sign of the B field is important in order to 
obtain the correct sign for the constants of the motion when the B field polarity is 
reversed. 

In practical application, the integrals of the fields can be pre-computed and put into 
a C++ class.  This allows for fast computation of the distortions and yet the 
constants of motion are completely independent of the integrals and can be updated 
run by run as the drift velocity changes. 


