Status and Plans of 2D Sensor Developments at IPHC

Marc Winter

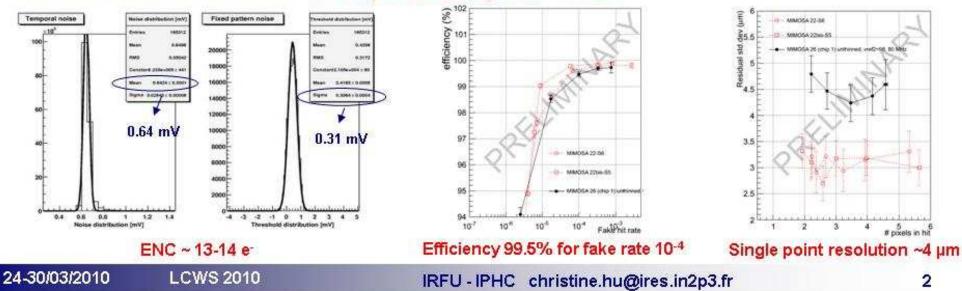
> more information on IPHC Web site: http://www.iphc.cnrs.fr/-CMOS-ILC-.html

Contents

MIMOSA-26:

 \triangleright on-going performance assessment \triangleright high-res AMS version

High-res process investigations :


 \triangleright others? \triangleright AMS \triangleright XFAB

- Plans for 2011 \rightarrow 2013 :
 - \triangleright CBM \triangleright ILC \triangleright others
- Questions to address during this meeting

Development of CMOS Pixel Sensors for Charged Particle Tracking

- 2009, an important year for CMOS pixel sensors R&D: MIMOSA26 has been designed, fabricated and tested within the EUDET program
- MIMOSA26 is a reticule size MAPS with binary output, 10 k images / s
 - Pixel array: 1152 x 576, 18.4 µm pitch
 - Architecture:
 - Pixel (Amp+CDS) array organised in // columns r.o. in the rolling shutter mode
 - 1152 ADC, a 1-bit ADC (discriminator) / column
 - Integrated zero suppression logic
 - Remote and programmable

Lab. and beam tests: 62 chips tested, yield ~75%

-2-

MIMOSA26 Test

Standard EPI layer (fab. end 2008) v.s. high resistivity EPI layer (fab. end 2009)

Charge collection & S/N (Analogue output, Freq. 20 MHz)

EPI layer	Standard (~10 Q.cm) 14 µm			High resistivity (~400 Q.cm)			00 Q.cm)	Seed 120 Beta source 20 MHz 100 Set 1 Sum 100 Set 0 Sum	Cluster 2by2 Bets source 20 Mets source 20 Mets source 20 Mets source 20 Mets source 20 Mets source 20 Mets	
	Seed	2x2	3x3	EPL	seed	2x2	3x3	11	- M	
Charge Collection (⁵⁵ Fe source)	~21%	% ~ 54 % ~ 7	2	10 µm	~ 36 %	~ 85 %	~ 95 %			
			~ 71 %	15 µm	~ 31 %	~31 % ~78 % ~91 %				
				20 µm	~ 22 %	~ 57 %	~ 76 %	Cluster 3by3	Cluster Sby5	
S/N at seed pixel (¹⁰⁶ Ru source)				10 µm		~ 35		an Andrew Stor 15pm	-	
	~ 20 (230 e [.] /11.6 e [.])		15 µm	~ 41						
			20 µm	n ~ 36				- Mr. Martin		

Sealation test under way for applications more demanding than ILC

- Ionising TID: 150 K, 300 K, 1M Rad
- Non Ionising NIEL: 3x10¹², 6x10¹², 1x10¹³, 3x10¹³ N_{ed}/cm²
- MIMOSA26 can be operated at a high readout speed
 - Solution Clock frequency: from 80 MHz_{typ.} (~110 μ s) up to 110 MHz (~80 μ s)
- MIMOSA26: design base line for STAR Vx upgrade, CBM MVD Its performances are close to the ILD vertex detector specifications

Mimosa26HR, batch 2010

Preliminary results

- 🗞 Standard epi. layer
- 🐁 10 μm, 15 μm and 20 μm 400 Ω.cm EPI Layer

Before irradiation

Analog calibration with X ⁵⁵Fe source, F=20 MHz, T=20°C, VDDA =3 V

* Calibration with beta ¹⁰⁶Ru source

Epi.Layer	Noise (e-)	Cal.Peak (ADC u.)	Seed Pixel (%)	Cluster 3x3 (%)	S/N*
Standard	11.8	358	21	73	21
10 µm	11.7	363	36	96	35
15 µm	11.8	375	32	92	41
20 µm	11.8	376	22	77	36

After non-ionizing irradiation at 6 10¹² n_{eq}/cm²

Analog calibration, F=20 MHz, T=15°C, VDDA =3.3 V

* Calibration with beta ¹⁰⁶Ru source

Epi.Layer	Noise (e-)	Cal.Peak (ADC u.)	Seed Pixel (%)	Cluster 3x3 (%)	S/N*
Standard	12.6	387	15	47	10.7
10 µm	13.8	381	34	87	22
15 µm	15.7	385	30	85	28

17/05/2010

Ultimate1

4

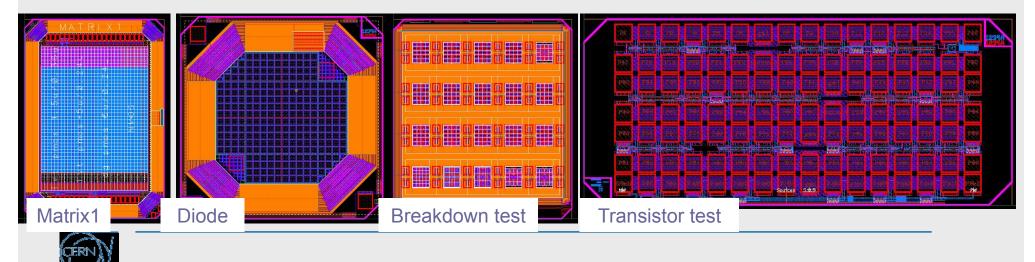
High Resistivity Sensitive Volume: Recent Step

- Motivations for improving the MIMOSA-26 design :
 - * validation of High-Res substrate against latch-up
 - * higher depletion voltage (SNR, rad. tol.): 0.7 V \longrightarrow \lesssim 2 V
 - st larger pitch (power dissipation, speed) for STAR-PIXEL : 18.4 $\mu m
 ightarrow$ 20.7 $\mu m \Rightarrow$ validate
 - * higher in-pixel amplification (SNR, rad. tol.) \Rightarrow less sensitivity to FPN
- Engineering run submitted April 14th shared with IRFU \Rightarrow back from foundry end of June
 - b delay generated by High-Res unavailability

Generic name	X(mm)	Y(mm)	Description		
TopLatchUp-AHR	2.07	2.35	Test structure: Anti-latchup digital cells		
Memory	3.01	3.08	Test structure: Anti-latchup memory cells		
MIMOSA-18AHR	5.70	6.50	Pixels with 10, 12 and 25 μm pitch		
MIMOSA-22AHR	3.70	13.00	M-22 replica, 18.4 μm pitch, 128 col. with discri. $ hinspace ightarrow$		
\sim \sim 3 epitaxial layer thicknesses: 10, 15 and 20 μm					

ho
ho
ho
ho 3 epitaxial layer thicknesses: 10, 15 and 20 μm

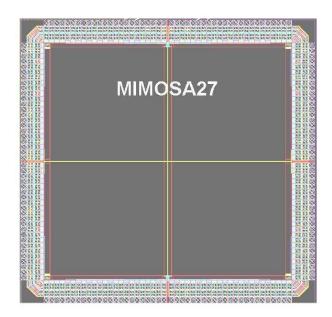
- Essential input for ULTIMATE design optimisation:
 - * lab tests in Summer
 - * beam tests (CERN-SPS) in August : tight schedule ! \Rightarrow flexibility in ULTIMATE submission date ?


- Still under evaluation :
 - * lowest Vdd value
 - * highest read-out frequency (beam tests)
 - * radiation tolerance
 - * SNR vs operating temperature
 - * surface temperature (vs time)

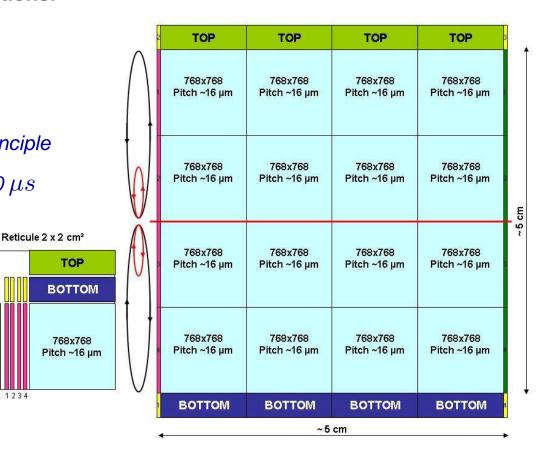
R&D PLANS until 2011/13

,

LePIX: monolithic detectors in advanced CMOS


- Submission for fabrication just finalized
 - Several issues: ESD, special layers and mask generation, guard rings
 - Still need to discuss some outstanding fabrication issues with IBM
- 7 chips submitted :
 - 4 test matrices
 - 1 diode for radiation tolerance
 - 1 breakdown test structure
 - 1 transistor test: already submitted once in test submission
- Will require very significant testing effort for which we need to prepare (measurement setup, test cards...)

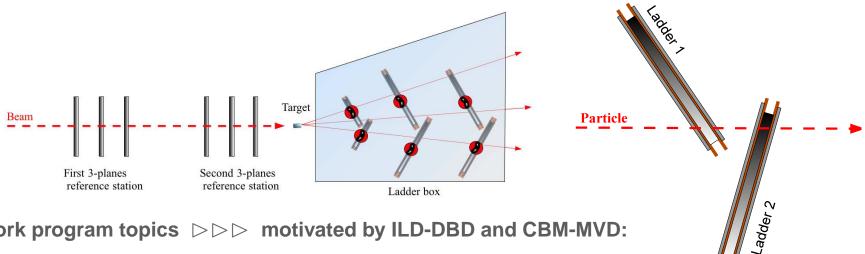
W. Snoeys, CERN-ESE-ME, 2010


MIMOSA-27 : First sensor in 0.18 μm technology

- Advantages expected from smaller feature size:
 - * higher operation speed inside chip
 - * reduced digital design surface
 - * reduced power consumption
 - * more metal layers for interconnections \Rightarrow reduced peripheral (insensitive) area
- MIMOSA-27 \equiv 1st sensor in 0.18 μm techno. (5 ML) \Rightarrow submitted on April 9th:
 - st 4 sub-arrays of 64x64 pixels with 20 μm pitch
 - * up to 16 options:
 - I diode size and type of configuration
 - ◊ 3T and self-bias
 - ◊ in-pixel amplification
 - * prominent studies motivating the submission:
 - $\diamond\,$ charge collection efficiency (10 μm thin epitaxy)
 - ◊ technology features
 - ♦ SNR
 - ◊ radiation tolerance
 - ٥

Investigating Large Area Sensors

- **Prototype multireticule sensor for large area stations:**
 - * 3072 \times 3072 pixels (16 μm pitch) \Rightarrow 5×5 cm² sensitive area
 - * requires combining several reticules
 - \Rightarrow stitching process \Rightarrow establish proof of principle
 - * double-sided read-out of 1536 rows in 250–300 μs
 - \Rightarrow Large Area Telescope for AIDA project (EU-FP7 approved recently)
 - * windowing of $\lesssim 1 \times 5 \text{ cm}^2$ (collim. beam) \Rightarrow \lesssim 50–60 μs r.o. time


- Submission expected end fo 2011 or early 2012:
 - * bonus: avoid paving MVD with reticule size sensors \Rightarrow dead zones, material, connectics/complexity

1234 1234

- * synergy with forward disk projects on collider experiments (e.g. EIC project at BNL)
- 6 sensors will compose a beam telescope at CERN (AIDA project deliverable) *
 - \triangleright few ns time stamping resolution associated to each hit by TLU (scintillator)

VTX Oriented Infrastructures Proposed for AIDA

- AIDA \equiv EU FP-7 Integrated Infrastructure project : approved in March 2010
- On-beam (CERN-SPS) test infrastructure (contents still under discussion):
 - Large Area beam Telescope (LAT) : *
 - ♦ LAT demonstrator : based on 2 arms of 3 ULTIMATE sensors
 - \diamond final LAT : 5×5 cm² sensor (16 μm pitch) using stitching
 - Alignment Investigation Devices (AID): *
 - ♦ box hosting pairs of ladders (PLUME) and unsupported pixelated systems (HP-2)
 - ♦ box front panel contains removable target

- Work program topics $\triangleright \triangleright \triangleright$ motivated by ILD-DBD and CBM-MVD:
 - alignment capabilities: dedicated equipment and particle tracks *
 - vertex reconstruction accuracy ⋇
 - track reconstruction with different devices (high spatial resolution combined with fast detectors)

Sensor Development Plans until 2013 (incomplete)

- Driving applications :
 - * Expts : STAR, FIRST, CBM, ILD, ALICE, eIC, CLIC
 - * EU projects: EUDET, HP-2, AIDA, HP-3 (proposal)
 - * R&D on 2D-sensors, 3D-sensors, 2-sided ladders, unsupported ladders
- CBM-MVD :
 - * MIMOSIS-100 : 3 prototypes (2010, 2011, 2013) to finalise sensor design for 2014
 - st specs: 5 μm , \leq 50 μm , \leq 40 μs , 10¹⁴ n_{eq}/cm², few MRad
 - * R&D on: 2-sided read-out, radiation-tolerance, multi-Suze design
 - * prototype fab (XFAB-0.35 HR): intermediate proto. mid-April '10, final proto. end '12, prod. end '13
- ILD-VTX :
 - * Detector Baseline Document (\leq TDR) to be delivered by end of 2012
 - st 2-sided r.o. with 16 μm pitch proto. (XFAB-0.35) to be submitted mid-April '11
 - * pixel array with columns ended with 4-bit ADC to be submitted in Q3 ('11)
 - * M-22 like sensor in XFAB-0.18 with 2-sided r.o. and $14\mu m$ pixel pitch to be submitted in Q1 ('12)
- Others :
 - * anti-latchup memory (XFAB-0.35 HR) : to be submitted Q4('10) or Q1('11)
 - * 3D sensors: next submission early 2011
 - ★ etc.

Some of the Questions to Address during the Meeting

- latch-up tests: who, where, when ?
- design review : where, when, reviewers ?
- ULTIMATE production procedure (steps ? wafers ?) and time line (hard limit ?)
- 50 μm butting: any interest ?
- next DoE review : when, IPHC representation ?
- next face-to-face meeting: when ?
- ULTIMATE-2 as a back-up ?