

iPHC

R.

ULTIMATE chip design

Design based on Mimosa26 architecture

- ⅍ Reticle size (~ 4 cm²)
 - 890 10³ pixels
- Reduced power dissipation
 - Vdd: 3V
 - Optimized pixel pitch v.s. Non ionising radiation tolerance
 Estimated power consumption ~134 mW/cm²
 - Shorter integration time
 Integration time = 185.6 µs
 - Improved pixel architecture
- Optimized discriminator timing diagram
 - Reduced threshold non uniformity
- Alleviated analogue to digital coupling
- I Higher hit density → larger memories
 - 3.5 times larger than Mimosa26
- Section 2 Sec
- Enhanced radiation tolerance
 - High res epitaxial layer process (400 Ω cm²)

ULTIMATE floor plan

PHC

Mimosa26HR, batch 2010

Preliminary results

PHC

- Standard EPI layer: 14 μm, 10 Ω.cm
- \backsim 10 $\mu m,$ 15 μm and 20 μm 400 $\Omega.cm$ EPI Layer
- Before irradiation

Analog calibration with X ⁵⁵Fe source, F=20 MHz, T=20°C, VDDA =3 V * Calibration with beta ¹⁰⁶Ru source

EPI Layer	Noise (e-)	Cal.Peak (ADC u.)	Seed Pixel (%)	Cluster 3x3 (%)	S/N*
Standard	11.8	358	21	73	21
10 µm	11.7	363	36	96	35
15 µm	11.8	375	32	92	41
20 µm	11.8	376	22	77	36

After non-ionizing irradiation at 6 10¹² n_{eq}/cm²

Analog calibration, F=20 MHz, T=15°C, VDDA =3.3 V

* Calibration with beta ¹⁰⁶Ru source

EPI Layer	Noise (e-)	Cal.Peak (ADC u.)	Seed Pixel (%)	Cluster 3x3 (%)	S/N*
Standard	12.6	387	15	47	10.7
10 µm	13.8	381	34	87	22
15 µm	15.7	385	30	85	28

17/05/2010

4

Mimosa22HR

- Chip submitted in April 2010
- Improve the non-ionizing radiation tolerance
- Optimized pixel pitch
 - ${\ensuremath{\,\textcircled{\tiny\sc b}}}$ Pitch = 18.4 μm and 20.7 μm
- Improved pixel architecture
 - Higher depletion voltage (SNR, rad. tol.): 0.7 V → 2 V
 - Cascode amplifier
- Improved pixel clamping voltage regulator
 - ✤ Vclp can be provided by the internal DAC
- This run includes also latch-up free memories design

SuZe

• SuZe condition:

PHC

- - Assumptions for LowRes EPI:
 - □ Isolate hits
 - □ 1 hit = 3x3 pixels
- Solve Noisy pixels: ~ 100 (10⁻⁴)
- Read-out row by row

Zero suppression algorithm

- **Find max. 6 strings per group**
 - 15 Groups of 64 columns
- Sind max. 9 strings per row
 - String (or state): up to 4 contiguous pixel signals above threshold
- Memories store hits
 - Section 2 memories of 2048x32 bits
 - Read/write ping-pong

Serial transmission

Solution Soluti Solution Solution Solution Solution Solution Solution S

Block diagram of the sensor read-out architecture

iPHC

Frequency distribution

Input:

Clk: 160 MHz (Input LVDS @ 160 MHz or using the internal PLL @ 10 MHz)

Inside chip:

Solution Systems Solution Solution Systems Solution S

Output:

♦ 2 LVDS data out: 160 MHz

- **Markers (LVDS): 1 MkD (per frame) and 1 ClkD (160 MHz)**
 - MkD and ClkD LVDS drivers may be disable by JTAG
 - Only 1 MkD and 1 ClkD by ladder

Testing functionality

PHC

- The data format is the same as Mimosa26 but read-out frequency is doubled
- Mode test «pixels+discris»: read 1 row register, data split to 2 outputs at 10 MHz
- Mode «normal»: data split to 2 outputs at 160 MHz with LSB first

For each line with hit : one Status/line followed by up to 9 States. The following data stream is generated:

- > Status/Line word: Address of line, Number of States (9 Max., overflow flag if > 9)
- > States list One state = consecutive pixels at 1 in the line:

Column address of the first pixel at 1, Number of pixels at 1

Power dissipation

Estimated power consumption: 134 mW/cm²

Pixel pitch (µm)	Pixels (mW)	Discris (mW)	Buffer Ref. (mW)	DAC (mW)	Digital (mW)	LVDS (mW)	Total (mW)	Power (mW/cm ²)
20.7 (960 col.)	170	200	50	20	140	40*	620	134
18.4 (1088 col.)	200	250	50	20	150	40*	710	154

Conditions: VDDA = 3 V VDDD = 3 V * LVDS driver: reduced differential signal at +/- 200 mV Chip area: 4.6 cm²

Continually optimisation of power consumption

- **bigital part**
- ✤ Ref. buffers, DAC
- ↳ ...

PHC

Butting

iPHC

17/05/2010

ULTIMATE planning

	Jan	Feb	March	Avril	Мау	June	July	Aug	Sept	Oct	Nov	Dec
M22 HiRes												
EPI HiRes												
Pixel design												
Analogue parts												
Design												
Optimisation	1											
Pixel decision												
Digital parts												
Design	1			1								
Optimisation												
Padring												
Integration												
Post-Simulation	1	l		1		l	l	1				
Verification												
Documentation												
Design Review										?		
Submission												
Fabrication												

17/05/2010