

Mimosa26 User Manual

(Preliminary version)

<u>A. Himmi</u>, G. Doziere, G. Bertolone, A. Brogna, W. Dulinski, C. Colledani, A. Dorokhov, Ch. Hu, F. Morel, O. Torheim, I.Valin Institut de Recherches Subatomiques IN2P3-CNRS / ULP Strasbourg – France

Y. Degerli, F. Gilloux CEA Saclay DAPNIA/SEDI

Document history									
Version	Date	Description							
1.0	November 2008	Based on Mimosa16 Version							

Mimosa22 plus chip									
Version	Date	Description	Comments						
1.0	Submitted November 08	AMS 035 Opto Version, 576 x 1152 pixels	Preliminary version						

1	Intro	duction	4
	1.1	General description of EUDET CMOS pixel sensor	. 4
	1.2	DIGITAL PART (SUZE)	5
	1.3	Introduction	5
	1.4	Synoptic of SUZE	6
	1.5	PLA	6
	1.5.1	Introduction	6
	1.5.2	Synoptic	. 7
	1.5.3	Coding	8
	1.5.4	Timing diagram for control signals	. 8
	1.6	States multiplexer	. 9
	1.6.1	Introduction	. 9
	1.6.2	Synchronization signals	. 9
	1.6.3	Module 6 x 9 \rightarrow 9	10
	1.6.4	Module 2 x 9 \rightarrow 9	11
	1.6.5	Coding	11
	1.7	Memory management	12
	1.7.1	Memory control + test mux + RAM	12
	1.7.2	Frame counter	12
	1.7.3	Serializer	13
2	Cont	rol Interface	14
	2.1	Introduction	14
	2.2	JTAG Instruction Set	14
	2.3	JTAG Register Set	16
	2.3.1	Instruction Register	16
	2.3.2	DEV_ID Register 1	16
	2.3.3	Boundary Scan Register 1	17
	2.3.4	BIAS_DAC Register 1	17
	2.3.5	5 LINEPATO_REG Register1	18
	2.3.6	5 DIS_DISCRI Register 1	18
	2.3.7	SEQUENCER_PIX_REG Register	19
	2.3.8	CONTROL_PIX_REG Register	21
	2.3.9	D LINEPAT1_REG Register	22
	2.3.1	0 SEQUENCER_SUZE_REG	23
	2.3.1	1 HEADER_REG	24
	2.3.1	2 CONTROL_SUZE_REG Register	25
	2.3.1	3 RO_MODE0 Register	27
	2.3.1	4 RO_MODE1 Register	28
	2.3.1	5 BYPASS Register	28
3	Runr	ning Mimosa26	29
	3.1	After reset	29
	3.2	Biasing Mimosa26	30
	3.3	Setting the Readout Configuration Registers	32
	3.4	Readout	32
	3.5	Analogue and digital Data Format	33
	3.5.1	Normal mode data format	33
	3.5.2	2 Test mode	38
	3.6	Mimosa26 Chronograms	46

	3.6.1	Normal Readout	46
	3.6.2	Readout synchronisation	47
	3.6.3	Main Signal Specifications	55
4	Index of	f the figures	63
5	Glossar	v. Abbreviations and acronyms tables.	64
-		, , · ·	

1 Introduction

1.1 General description of EUDET CMOS pixel sensor

Mimosa26 is the final sensor chip of EUDET JRA1 beam telescope for the ILC vertex detector studies. Its architecture is based on the Mimosa22 (Monolithic Active Pixel Sensor (MAPS) with fast binary readout) and on a prototype circuit named SUZE01 which performs integrated zero suppression. The size of the chip is 13,7 mm x 21,5 mm and the sensor matrix is composed by 576x1152 pixels of 18.4 μ m pitch. The pixel design is based on self biased diode radtol architecture. The design process is Austria Mikrosysteme AMS-C35B4/OPTO which uses 4 metal- and 2 polylayers. The thickness of the epitaxial layer is 14 μ m. The design tools are CADENCE DFII 5.1 with DIVA, ASSURA, CALIBRE rules. The chip has been submitted in an Engineering Run via CMP on 19th December 2008.

In the EUDET beam telescope, the hit rate is less than 5 hits/ image. The design of the sensor is driven by the high readout frequency in order to keep the track multiplicity per frame at a low level. It is done by read out pixel columns in parallel, row by row. The chip readout time is 115.2 μ s. Each pixel includes an amplification and Correlated Double Sampling (CDS) and each end of column is equipped with a discriminator. After analogue to digital conversion, digital signals pass through the zero suppression circuits. The digital signals are processed in parallel on 18 banks, then arranged and stored in a memory row by row. Two memories banks have been implemented in the sensor to perform read and write operations simultaneously (see Figure 1 : Mimosa26 functional view).

Figure 1 : Mimosa26 functional view Does not correspond to the floorplan neither for the core, neither for the pad ring

1.2 DIGITAL PART (SUZE)

1.3 Introduction

The following synoptic shows the implementation of SUZE into Mimosa 26.

Figure 2: top view implementation of SUZE in MIMOSA 26

This digital part manages sequentially each line for the whole frame composed of 576 lines of 1152 columns. The main sequencer gives to the structure the address of lines and all synchronisations and controls signals. A JTAG controller brings the configuration information. (Table of configurations registers) A test structure simulates a matrix of pixel in order to check the functions of SUZE.

1.4 Synoptic of SUZE

This digital part is constituted of 3 parts:

- The priority look ahead (PLA),
- The multiplexer,
- And the memory management.

Figure 3: SUZE block diagram

1.5 PLA

1.5.1 Introduction

The Priority look ahead receives a line constituted of 1152 pixels (1151 to 0). Inside this module, the line is managed in 18 (parts or blocks) x 64 (pixels).

Each block extracts of the bus of 64 pixels:

- 1 status group,
- 5 states,
- 1 Overlapping.

The system includes a daisy chain of 18 blocks.

Figure 4: PLA block diagram

1.5.3 Coding

The following table shows the format of the result for one block.

State 0				State 1				State 2																			
0		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26
	0	1	2	0	1	0	1	2	3	4	5	0	1	0	1	2	3	4	5	0	1	0	1	2	3	4	5
S	statu	s blo	ock	COC	ling		Co	olumn	addre	SS		COC	ding		Co	lumn	addre	SS		COC	ling		Co	olumn	addres	SS	
-																											
				Sta	te 3							Sta	te 4							Sta	te 5				new	/_bit/	210j
27		28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53
	0	1	0	1	2	3	4	5	0	1	0	1	2	3	4	5	0	1	0	1	2	3	4	5	0	1	2
CC	odin	g		Co	lumn	addre	SS		COC	ling		Co	olumn	addre	SS		COC	ling		Co	lumn	addre	SS		Ove	erlapp	ing

Figure 5: format of the PLA results

For the whole line, we have 18 x 1 status blocks and 18 x 6 states.

1.5.4 Timing diagram for control signals

1.6 States multiplexer

1.6.1 Introduction

This block is constituted of 3 objects:

- 2 identicals modules (Mux $6x9 \rightarrow 9$)which extract each one 9 states and 1 status for an half line
- 1 module (Mux 2 x 9 → 9) which retains 9 states and a status from these 2 modules

Figure 7: Multiplexor top view

1.6.2 Synchronization signals

Figure 8: Synchronization signals for MUX 6 x 9 \rightarrow 9 top view

1.6.3 Module 6 x 9 → 9

Figure 9: Module 6 x 9 \rightarrow 9 top view

Figure 10: Module $6 \ge 9 \Rightarrow 9$ top view

1.6.5 Coding

The following table shows the format of the result for the line given to the memory mangement.

Figure 11: format of the Mux results

1.7 Memory management

1.7.1 Memory control + test mux + RAM

1.7.1.1 Introduction

The multiplexer test explained in the test part later used the first stage of the memory manager.

1.7.1.2 Top view diagram

Figure 12: Memory management top view

1.7.2 Frame counter

This frame counter initialized at the reset works from 0 to FFFF_FFFF and restarts from 0.

To reinitialize the counter, put 1 then 0 in the startframe bit from RO_MODE1 Register.

1.7.3 Serializer

This stage formats the data to the output ports, and selects the test or normal working mode.

If en_scan out :

- = 1, please refer to the test mode paragraph,
- = 0 please refer to the normal mode data format paragraph.

2 Control Interface

2.1 Introduction

The control interface of Mimosa26 complies with Boundary Scan, JTAG, IEEE 1149.1 Rev1999 standard. It allows the access to the internal registers of the chip like the bias Register and the different registers control.

On Power-On -Reset, an internal reset for the control interface is generated. The finite state machine of the Test Access Port (TAP) of the controller enters in the Test-Logic-Reset state and the ID register is selected.

Mimosa26 has been designed in order to be fully adjustable via the control interface. Nevertheless several voltages level can be set either via the control interface or via a pad.

2.2 JTAG Instruction Set

The Instruction Register of the JTAG controller is loaded with the code of the desired operation to perform or with the code of the desired data register to access.

Instruction	5 Bit Code ₁₆	Selected Register	Notes
EXTEST	01	BSR	JTAG mandatory instruction
HIGHZ	02	BYPASS	JTAG mandatory instruction
INTEST	03	BSR	JTAG mandatory instruction
CLAMP	04	BYPASS	JTAG mandatory instruction
SAMPLE_PRELOAD	05	BSR	JTAG mandatory instruction
ID_CODE	0E	DEV_ID register	User instruction
BIAS_GEN	0F	BIAS_DAC	DATAREG0
LINE0_PATTERN_REG	10	LINE0PAT_REG	DATAREG1
DIS_DISCRI	11	DIS_DISCRI	DATAREG2
SEQ_PIX_REG	12	SEQUENCER_PIX_REG	DATAREG3
CTRL_PIX_REG	13	CONTROLER_PIX_REG	DATAREG4
LINE1_PATTERN_REG	14	LINE1PAT_REG	DATAREG5
SEQ_SUZE_REG	15	SEQUENCER_SUZE_REG	DATAREG6
HEADER_TRAILER_REG	16	HEADER_REG	DATAREG7
CTRL_SUZE_REG	17	CONTROLER_SUZE_REG	DATAREG8
CTRL_8b10b_REG0	18	CONTROLER_8b10b_REG0	DATAREG9
CTRL_8b10b_REG1	19	CONTROLER_8b10b_REG1	DATAREG10
NU1	1A		DATAREG11
NU2	1B		DATAREG12
NU3	1C		DATAREG13
RO_MODE1	1D	ReadOut Mode 1	DATAREG14
RO_MODE0	1E	ReadOut Mode 0	DATAREG15
BYPASS	1F	BYPASS	JTAG mandatory instruction

(1) Instruction codes implemented but not the corresponding registers. To be fixed in the next version.

2.3 JTAG Register Set

JTAG registers are implemented with a Capture/Shift register and an Update register. JTAG standard imposes that the last significant bit of a register is downloaded/shifted first.

Register Name	Size	Access	Notes
INSTRUCTION REG	5	R/W	Instruction Register
DEV_ID	32	R Only	
BSR	10	R/W	Boundary scan register
BIAS_DAC	152	R/W	Previous value shifted out during write
LINE0PAT_REG	1152	R/W	Previous value shifted out during write
DIS_DISCRI	1152	R/W	Previous value shifted out during write
SEQUENCER_PIX_REG	128	R/W	Previous value shifted out during write
CONTROLER_PIX_REG	40	R/W	Previous value shifted out during write
LINE1PAT_REG	1152	R/W	Previous value shifted out during write
SEQUENCER_SUZE_REG	160	R/W	Previous value shifted out during write
HEADER_REG	64	R/W	Previous value shifted out during write
CONTROLER_SUZE_REG	48	R/W	Previous value shifted out during write
CONTROLER_8b10b_REG0	144	R/W	Previous value shifted out during write
CONTROLER_8b10b_REG1	312	R Only	
NU1NU3	0		Not implemented. For future use
RO_MODE1	8	R/W	Previous value shifted out during write
RO_MODE0	8	R/W	Previous value shifted out during write
BYPASS	1	R Only	

2.3.1 Instruction Register

The Instruction register is a part of the Test Access Port Controller defined by the IEEE 1149.1 standard. The Instruction register of Mimosa26 is 5 bits long. On reset, it is set with the ID_CODE instruction. When it is read the 2 last significant bits are set with the markers specified by the standard, the remaining bits contain the current instruction.

X X X	1	0
-------	---	---

2.3.2 DEV_ID Register

The Device Identification register is implemented. It is 32 bits long and has fixed value hardwired into the chip. When selected by the ID_CODE instruction or after the fixed value is shifted via TDO, the JTAG serial output of the chip. Mimosa26 ID_CODE register value is M26 + 0x4D323601.

Bit #	Bit Name	Purpose	Default va		
31-0	ID_CODE	Device Identification register	4D323601	ASCII	HEX
				'M'	4D
				'2'	32
				'6'	36
				<soh></soh>	01

2.3.3 Boundary Scan Register

The Boundary Scan Register, according with the Jtag instructions, tests and set the IO pads. The Mimosa26 BSR is 10 bits long and allows the test of the following input and outputs pads.

Bit #	Corresponding Pad	Туре	Signal	Notes	
9	SPEAK	Input	SPEAK	Active Readout Marker & Clock	
8	CkCMOS	Input	CkCMOS	CMOS Clock	
7	START	Input	START	Readout : Input synchronisation	
6	LVDS CkRdLn/CkRdLp	Input	ClkLvds	Resulting CMOS signal after LVDS	
				Receiver	
5	No Used				
4	MK_CLK_A	Ouput	MK_CLK_A	Readout : Analogue Marker & Clock	
3	No Used				
2	CLKA	Ouput	CLKA	Readout Analogue Clock	
1	Tst2Pad	Ouput	Tst2Pad	Readout Test Pad 2	
0	Tst1Pad	Ouput	Tst1Pad	Readout Test Pad 1	

2.3.4 BIAS_DAC Register

The BIAS_DAC register is 152 bit wide; it sets simultaneously the 19 DAC registers.

As show bellow these 8-bit DACs set voltage and current bias. After reset the register is set to 0, a value which fixes the minimum power consumption of the circuit. The current values of the DACs are read while the new values are downloaded during the access to the register. An image of the value of each DAC can be measured on its corresponding test pad.

Bit	DAC #	DAC Internal	DAC purpose	Corresponding
range		Name		Test Pad
151-144	DAC18	IKIMO	External circuit monitoring	VKIMO
143-136	DAC17	IPIX	Pixel source follower bias	IPIX
135-128	DAC16	IDIS2	Discriminator bias 2	IDIS2
127-120	DAC15	IDIS1	Discriminator bias 1	IDIS1
119-105	DAC14	IVDREF2	Discriminator Reference 2	VDREF2
111-104	DAC13	IVDREF1A	Discriminator Reference 1 (Bank A)	VDREF1A
103-96	DAC12	IVDREF1B	Discriminator Reference 1 (Bank B)	VDREF1B
95-88	DAC11	IVDREF1C	Discriminator Reference 1 (Bank C)	VDREF1C
87-73	DAC10	IVDREF1D	Discriminator Reference 1 (Bank D)	VDREF1D
79-72	DAC9	IAnaBUF	Analogue Buffer bias	IAnaBUF
71-64	DAC8	IVTST2	Test Level, emulates a pixel output	VTEST2
63-56	DAC7	IVTST1	IDEM	VTEST1
55-48	DAC6	ILVDS	LVDS PAD bias	ILVDS
47-40	DAC5	ILVDSTX	LVDS PAD bias	ILVDSTX
39-32	DAC4	ID2PWRS	Discriminator bias 2 (mode low consp.)	
31-24	DAC3	ID1PWRS	Discriminator bias 1 (mode low consp.)	
23-16	DAC2	IBufBias	Ref&Tst Buffer bias	BUFBIAS
15-8	DAC1	IPwrSWBias	Discriminator Power Pulse bias	PWRSWBIAS
7-0	DAC0	ICLPDISC	Discriminator Clamping bias	DISCLP

2.3.5 LINEPAT0_REG Register

The LINEPATO_REG register is 1152 bits large. The purpose of this register is to emulate discriminators outputs rows in *En_LineMarker* and Pattern_Only modes.

When *Pattern_Only* is active, the values stored in the pixel matrix are ignored and the value of LINEPAT0_REG is sent to the output. This is a test mode which emulates the (digital) pixel response with the contents programmed into the LINEPAT0_REG register in order to verify the digital processing. The pattern is alternated with the contents of the LINEPAT1_REG.

In the *En_LineMarker* mode, it adds two rows at the end of matrix for a readout chip and the LINEPATL0_REG register is read to emulate the discriminators outputs of these two supplementary rows.

After the initialisation phase (reset), this register is preset to 0.

Bit #	Bit Name	Purpose	Basic configuration value Code₁₆
1151-0	LinePatL0Reg	Emulate discriminators	AAAAAA_AAAAAAAA_AAAAAAAAAAAAAAAAAAAAAA
		rows	$AA^{(1)}$

(1) Example of pattern used in simulation.

2.3.6 DIS_DISCRI Register

The DIS_DISCRI register is 1152 bits large. The purpose of this register is to disable the discriminator on a specific column if it is noisy, by gating Latch signal and setting the output discriminator at 0.

The default value of the DIS_DISCRI register is 0; it means that all discriminators are activated. Setting a bit to 1 disables the corresponding discriminator. In Mimosa26, the DisableLatch<1151> is on the left hand side while DisableLatch<0> is on the right hand side.

1151 (Msb)	0 (Lsb)
DisableLatch<1151>	DisableLatch<0>

2.3.7 SEQUENCER_PIX_REG Register

The SEQUENCER_PIX_REG registers are 128 bits large; this register contains all parameters to generate readout pixel and discriminator sequence.

Bit #	Bit Name	Purpose	Basic configuration	Signal Name
			value Code ₁₆	
127-112	DataRdPix	Connect pixel output to common column	7FFF	Slct_Row_Int
111-96	DataRst1	Set reference voltage for diode	0040	Rst
95-80	DataClp	Set reference voltage for clamping	01C0	Clamp
79-64	DataCalib	Sample after clamping	3C00	Calib
63-48	DataRdDsc	Sample before clamping	001C	Read
47-32	DataLatch	Latch state of the discriminator	6000 (1)	Latch
31-0	DataPwrOn	Activate power supply for pixel	7FFFFFFF	Pwr_On

Example: Generation of Latch Signal

Figure 13 : Example: Generation of Latch Signal

Related timing with f_{clk}=80 MHz (Read, Calib, Latch signals are used by the column readout circuitry).

Baseline ▼= 491,531.2 Pri Cursor-Baseline ▼= 200ns	'5ns	Baseline = 4	91,531.25ns			TimoA - 491 721 25nc
Name 🕶	Cursor 🔻	1,520ns	491,560ns	491,600ns	491,640ns	491,680ns 491,720ns
Clk Clamping Clamping Clamping Clamping Clamping Clamping	1 0 0 0 0					
F→ Calib	0			200	D ns	

Figure 14 : Simulation timing diagram for signals of SEQUENCER_PIX_REG (1)

This is readout sequence of the pixel and discriminator for 2 successive rows of matrix. In the waveform, the • indexation of internal signal vectors is reversed compared with the Mimosa26 functional view (for example, the signal Pwr_On[575] corresponds to the row at the top of matrix).

R Baseline ▼= 491,531.250 R Cursor-Baseline ▼= 200ns	ns			Base	line = 491,501.25ns	TimeA = 49	1 731 25ns	
Name 🕶	Cursor 🔻	300ns	491,400ns	491,500ns	491,600ns	491,700ns	491,800ns	491,9
r <mark>k→</mark> cik	1							M
Friend Pwr_0n[575]	0							-22-40503 H 10-00-25
Sict_Row_Int[575]	0				11-11-11			
	0							
Clamping[575]	0							
Pwr_0n[574]	1							
Sict_Row_Int[574]	1							
[-→ Rst[574]	0							
Clamping[574]	0		0		4			
<mark>E→</mark> Read	0		L					
<mark>F→</mark> Latch	0						м	
r→ Calib	0							
	1	•						

Figure 15 : Simulation timing diagram for signals of SEQUENCER_PIX_REG (2)

2.3.8 CONTROL_PIX_REG Register

The CONTROL_PIX_REG registers are 40 bits large; they allow setting parameters of the readout controller.

Bit #	Bit Name	Purpose	Basic	configuration value Code ₁₆
39-36	NU	Reserved, Not Used	0	
35-33	SelPad1	Selection bit of Test1Pad	0	MK_Test_A signal
32-30	SelPad2	Selection bit of Test2Pad	0	MK_Test_D signal
29-20	RowMkLast	Row number of the frame. It depends of readout mode. When the En_HalfMatrx mode is active, the value is 0x013F otherwise 0x023F. When the En_LineMarker mode is active, add two rows at the end of matrix.	023F	Normal mode, the number of row matrix is 576.
19-10	RowMkd	Selection parameter of row for digital marker (MK_Test_D)	0	Digital marker place is first row of matrix during the readout
9-0	RowMka	Selection parameter of row for analogue marker (MK_Test_A)	0	analogue marker place is first row of matrix during the readout

The purpose of this array is to describe the internal signals which can be checked using 2 test pads (Tst1Pad and tst2Pad). The internal signals can be selected with SelPad1 and SelPad2 bits.

SelPad1	Tst1Pad	Purpose	SelPad2	Tst2Pad	Purpose
0	MK_Test_A	Analogue marker is shifted of 80 ns to MK_A signal. This signal rises up at the beginning read phase and falls down at the end of Calib phase. It depends of RowMka selection parameter.	0	MK_Test_D	Digital marker corresponding to last serialized digital data. It depends of RowMkd selection parameter.
1	Mk_Rd	Analogue marker corresponding to Rd phase of readout pixel. It depends of RowMka selection parameter	1	PwrOns	Same signal as PwOn, but shifted of 16 main clock
2	Mk_Calib	Analogue marker corresponding to Calib phase of readout pixel. It depends of RowMka selection parameter	2	PwOn	Activate power supply for pixel
3	CkDiv32	CkDiv16 signal is devised by 2	3	SlcRowInt	Connect pixel output to common column
4	MK_A	Analogue marker corresponding to readout pixel sequence. It depends of RowMka selection parameter.	4	Clp	Set reference voltage for clamping
5	Clp	Set reference voltage for clamping	5	RstDiode	Set reference voltage for diode
6	Latch	Latch state of the discriminator	6	Rd	Sample before clamping
7	CkDiv16	Main Clock is devised by 16	7	Calib	Sample after clamping

2.3.9 LINEPAT1_REG Register

The LINEPAT1_REG register is 1152 bits large. The purpose of this register is to emulate discriminators outputs rows in *En_LineMarker* and Pattern_Only modes.

When *Pattern_Only* is active, the values stored in the pixel matrix are ignored and the value of LINEPAT1_REG is sent to the output. This is a test mode which emulates the (digital) pixel response with the contents programmed into the LINEPAT0_REG register in order to verify the digital processing. The pattern is alternated with the contents of the LINEPAT1_REG.

In the *En_LineMarker* mode, it adds two rows at the end of matrix for a readout chip and the LINEPATL1_REG register is read to emulate the discriminators outputs of these two supplementary rows.

Bit #	Bit Name	Purpose	Basic configuration value Code₁₆
1151-0	LinePatL1Reg	Emulate discriminators	555555_555555555555555555555555555 ⁽¹⁾
		rows	

(1) Example of pattern used in simulation.

With Line1_PAT_REG together these two signals will form the elements of the simulated frame given to SUZE part.

Figure 16 : Generation of the test frame pattern

2.3.10 SEQUENCER_SUZE_REG

The SEQUENCER_SUZE_REG registers are 160 bits large; this register contains all parameters to generate readout zero suppression (suze) sequence.

Bit #	Bit Name	Purpose	Basic	Signal Name
			configuration	
			value Code ₁₆	
159-144	dckreadpixmux	Sample signal for multiplexor after Priority look ahead	0555	CkReadPixMux
143-128	dcklatchhit	Synchronization signal every line for Priority Look Ahead	3000	CkLatch
127-112	dcklatchhitmem	Synchronization signal every line for memory management	1000	CkLatchMem
111-96	dckmemlatch	Synchronization signal every line for Priority Look Ahead	0555	CkMemLatch
95-80	dckreadpix5ns	Synchronization signal 6 times every line for memory management shifted of 5 ns compared with CkReadpix	82aa	CkReadPix5ns
79-64	dckreadpix	Synchronization signal 6 times every line for memory management	0555	CkReadPix
63-48	ddebutligne	Synchronization signal every line for memory management	e001	debutligne
47-32	drstline	Synchronization signal every line for all SUZE part	6000	RstLine
31-16	drstpix		0555	RstPix
15-0	drsttrame		2000	RstTrame

• Related timing with f_{clk} =80 MHz (Theses signals are used by zero suppression circuit).

Figure 17 : Simulation timing diagram for signals of SEQUENCER_SUZE_REG

2.3.11 HEADER_REG

The register called Header_Reg includes 4 registers of 16 bits as shown below.

Bit #	Bit Name	Purpose	Basic configuration value
63-48	header0	Synchronisation header for serial output0	5555
47-32	header1	Synchronisation header for serial output1	5555
31-16	trailer0	Synchronisation trailer serial output0	AAAA
15-0	trailer1	Synchronisation trailer serial output1	AAAA

For both modes according to the register DUALCHANNEL the header and the trailer of each data frame can be different. The following table shows the possible *Header* and the *Trailer* which ensure the unicity in the data frame. The unicity is guaranteed without the *Frame counter*.

Bits	0-3 (in hexa)	4-14	15
	1	X	1
	2	X	1
	3	X	1
	4	X	1
	5	X	1
D 11	6	X	1
Possible Hoodon on	7	X	1
Trailer	8	X	1
Tranci	А	X	1
	В	X	1
	С	X	1
	D	X	1
	Е	X	1
	F	X	1

 Table 1: possible Header and Trailer for mode 0 and 1 to ensure unicity (or mode 2 with 32 bits)

2.3.12 CONTROL_SUZE_REG Register

The CONTROL_SUZE_REG registers are 48 bits large; they allow setting parameters of the readout controller for suze.

Bit #	Bit Name	Purpose	Basic	configuration value Code ₁₆
47-46	NU	Reserved, Not Used	0	
45-43	SelPad4	Selection bit of Test4Pad	0	debutligne
42-40	SelPad3	Selection bit of Test3Pad	0	cklatchhit
39	En_auto_scan_discri		0	
38	En_scan		0	
37	Test_after_mux		0	
36	entestdatadisc		0	
35-26	RowLastSuze	Row number of the frame. It depends of readout mode. When the En_HalfMatrx mode is active, the value is 0x013F otherwise 0x023F. When the En_LineMarker mode is active, add two rows at the end of matrix.	023F	Normal mode, the number of row matrix is 576.
25-16	ScanLineTst	Selection parameter of row for digital	0	Digital marker place is first row of matrix during the readout
15	dualchannelout	Determines the data stream on the channel or in one channel	0	Cf. explanation of the data stream output
14	clkrateout	Determines the clock rate of the outputs channel or in one channel	0	Cf. explanation of the data stream output
13	jsupinitmem	Authorizes the initialization test of the FIFO or not. High level active.	1	
12	disckgmodgate	Discriminator switched ON/Off	0	
11-9	cfgwr	Cf. cfg multiplexors configuration	0	
8-6	cfgdata	Idem	0	
5-3	cfgcs	Idem	0	
2-0	cfgadr	Idem	0	

The internal following signals can be selected with SelPad3 and SelPad4 bits.

SelPad3	Tst3Pad	Purpose	SelPad4	Tst4Pad	Purpose
0	cklatchhit	Cf; sequencer_suze_reg	0	debutligne	
1	cklatchhitmem	دد دد	1	rstline	
2	ckmemlatch	دد دد	2	debuttrame	
3	ckreadpix	دد دد	3	rsttrame	
4	ckreadpix5ns	دد دد	4	rst_frame	
5	ckreadpixmux	دد دد	5	rstpix	
6	latch	دد دد	6	synmux	
7	Clkdiv8	Main clock divided by 8	7	seqrstb	

Data stream output

clkrateout	dualchannelout	Config.	Description	
0	0	0	The data are sampled by the frequency output clock 40 MHz.	The data stream is output on data line 1 only, Data line 0 stay to low level
0	1	1		The data stream is output on both data line 0 and 1.
1	0	2	The data are sampled by the frequency output clock 80 MHz.	The data stream is output on data line 1 only, Data line 0 stay to low level
1	1	3		The data stream is output on both data line 0 and 1.

Cfg multiplexors configuration

This configuration register selects the output of the address and data busses, the chip select and write signals we display at the external pads.

The following pictures show the different options.

Figure 18: Cfg multiplexors configuration

Truth table

Cfgwr	Output padwr,	Description ¹	Cfgdata	Output D<15:0>,	Description
	reference			reference	
0	Wrimp	Write strobe signal odd	0	etatimpc	Odd data bus
1	Wrp	Write strobe signal even	1	Etatpc	Even data bus
2	Wra	Write strobe signal of the RAM low in writing mode	2	Shiftreg0	Reading of the DATA out first 16 bits word
3	wrb	Write strobe signal of the RAM high in writing mode	3	Shiftreg1	Reading of the DATA out second 16 bits word
4	Wr0	Write strobe signal of the RAM 1 low.	4	Di0	Data input bus of the RAM 1 low
5	Wr 1	Write strobe signal of the RAM 1 high.	5	Di1	Data input bus of the RAM 1 high
6	Wr2	Write strobe signal of the RAM 2 low.	6	Di2	Data input bus of the RAM 2 low
7	wr3	Write strobe signal of the RAM 2 high.	7	Di3	Data input bus of the RAM 2 high

¹ All the description make reference to the synoptic of the memories management

Cfadr	Output padcs, Internal signal reference	Description	Cfgcs	Output padsynchro, Internal signal reference	Description
0	csimpc	Cs strobe signal odd	0	rst_trame	Beginning of the frame (active low)
1	cspc	Cs strobe signal even	1	ckreadpix5ns	Clock read pixel delayed of 5 ns
2	Csw0	Cs strobe signal of the RAM low in writing mode	2	cklatch	Latch of the previous line, synchronization of the line acquisition each end of line
3	Csw1	Cs strobe signal of the RAM high in writing mode	3	debutligne	Beginning of the line (active high)
4	cs0	Cs strobe signal of the RAM1 low	4	debuttrame	Beginning of the frame (active high)
5	cs 1	Cs strobe signal of the RAM1 high	5	trameswap	Swap memory
6	cs 2	Cs strobe signal of the RAM2 low	6	debuttrame	Idem
7	Cs 3	Cs strobe signal of the RAM2 high	7	debuttrame	Idem

2.3.13 RO_MODE0 Register

The RO_MODE0 registers are 8 bits large; they allow the user to select specific digital mode of the chip.

Bit #	Bit Name	Purpose	Ba	sic configuration value
7	EnVDiscriTestDigital	Enable the internal injection of VTEST	0	External injection of VTEST
6	En_HalfMatrx	Set the row shift register to 320 in place of 576 bits.	0	Normal mode, 576 row shift register selected
5	DisLVDS	Disable LVDS and active clock CMOS.	0	LVDS selected
4	En_LineMarker	Add two rows at the end of matrix for a chip Readout: The LINEPAT_REG register is selected to emulate discriminators outputs. For analogue outputs, the 2 Test Levels, VTEST1 and VTEST2 are selected which emulate a pixel output.	0	Normal mode
3	MODE_SPEAK	Select Marker signal or Readout Clock for digital and analogue data (MK_CLKA and MK_CLKD pads)	0	Marker signal active
2	Pattern_Only	Test Mode: Select LINEPAT_REG to emulate discriminators outputs	0	Normal mode
1	En_ExtStart	Enable external START input synchronisation (1)	0	Normal mode
0	JTAG_Start	Enable Jtag START input synchronisation (2)	0	

(1) The minimum wide of asynchronous external START signal is 500 ns, and this signal is active at high level.

(2) When En_ExtStart is disabled, it's possible to generate internal START by accessing JTAG_Start bit. JTAG_Start signal is realized by three JTAG access: First step, this bit is set to 0, second step it is set to 1, and at last it is set to 0.

2.3.14 RO_MODE1 Register

The RO_MODE1 registers are 8 bits large; they allow selecting specific analogue mode of the chip.

Bit #	Bit Name	Purpose	Basic configuration value		
7	startframe	Reinitializes the frame counter to 0.	0		
6	EnTestAnalog	Enable analog output	0		
5	EnAnaDriverScan	Enable scan pixel mode	0		
4	DisBufRef	Disable the internal reference	0	Select Internal Buffer	
3	EnPll	Enable internal pll	0		
2	EnDiscriAOP	Enable the Power pulse Amplifier	0	Normal mode	
1	EnDiscriPwrSave	Enable the discri power pulse mode	0	Normal mode	
0	EnTestDiscri	Enable the discri. test mode	0	Normal mode	

2.3.15 BYPASS Register

The Bypass register consists of a single bit scan register. It is selected when its code is loaded in the Instruction register, during some actions on the BSR and when the Instruction register contains an undefined instruction.

3 Running Mimosa26

The following steps describe how to operate Mimosa26

3.1 After reset

On RSTB active low signal:

- All BIAS registers are set to the default value, i.e. 0
- DIS_DISC is set to 0, i.e. all columns are selected
- RO_MODE0 is set to 0
- RO_MODE1 is set to 0
- CONTROL_PIX_REG is set to 0
- CONTROL_SUZE_REG is set to 0
- SEQUENCER_PIX_REG is set to 0
- SEQUENCER_SUZE_REG is set to 0
- HEADER_REG is set to 0
- LINE0PAT_REG is set to 0
- LINE1PAT_REG is set to 0
- JTAG state machine is in the Test-Logic-Reset state
- JTAG ID_CODE instruction is selected

Then the bias register has to be loaded. The same for the RO_MODE0, RO_MODE1, CONTROL_PIX_REG, CONTROL_SUZE_REG, SEQUENCER_PIX_REG, LINE0PAT_REG, LINE1PAT_REG, HEADER_REG and DIS_DISC registers if the running conditions differ from defaults. Finally the readout can be performed either in normal mode or in test mode.

3.2 Biasing Mimosa26

The BIAS_DAC register has to be loaded before operating Mimosa26.

The 19 DACs constituting this register are built with the same 8 bits DAC current generator which has a 1 μ A resolution. Specific interfaces like current mirror for current sourcing or sinking and resistors for voltages, customise each bias output. The following table shows the downloaded codes which set the nominal bias.

Internal		Simulation		Resolution	Range	Experimental
DAC	Code ₁₆ -	DacInternal	Output			Code ₁₆ -
Name	Code ₁₀	current-µA	value			Code ₁₀
VKIMO	64-100	100	1 V	10 mV	From 0 up to 2.55 V	
IPIX	32-50	50	50 µA	1 μA	From 0 up to 255 µA	
IDIS2	20-32	32	5 μΑ	156 nA	From 0 up to 255 µA	
IDIS1	20-32	32	10 µA	312 nA	From 0 up to 255 µA	
VDISREF2	76-118	118	1.18 V	10 mV	From 1 up to 1.5 V	
VDISREF1A	80-128	128	1.18 V	250 µV	From -32 up to 32 mV (1)	
VDISREF1B	80-128	128	1.18 V	250 µV	From -32 up to 32 mV (1)	
VDISREF1C	80-128	128	1.18 V	250 µV	From -32 up to 32 mV (1)	
VDISREF1D	80-128	128	1.18 V	250 µV	From -32 up to 32 mV (1)	
IAnaBUF	32-50	50	500 μΑ	10 µA	From 0 up to 255 µA	
VTEST2	76-118	118	1.18 V	10 mV	From 1 up to 1.5 V	
VTEST1	80-128	128	1.18 V	250 µV	From -32 up to 32 mV (1)	
ILVDS	20-32	32	7 μΑ	218 nA	From 0 up to 255 µA	
ILVDSTX	28-40	40	40 µA	1 μΑ	From 0 up to 255 µA	
IDis2PwrS	A-10	10	100 nA	10 nA	From 0 up to 255 µA	
IDis1PwrS	A-10	10	100 nA	10 nA	From 0 up to 255 µA	
IBufBias	A-10	10	10 µA	1 μΑ	From 0 up to 255 µA	
IPwrSWBias	A-10	10	10 µA	1 μA	From 0 up to 255 µA	
VDISCLP	64-100	100	2.1 V	10 mV	From 1.2 up to 3.2 V	

(1) Referenced with respect to IVDREF2. The threshold voltage of the discriminators ΔV th is defined as Vref1-Vref2 (Vref1=Vref2+ ΔV th).

Figure 19: Bias synthetic block diagram

3.3 Setting the Readout Configuration Registers

If the desired operating mode does not correspond to the default one, set LINEPAT0_REG, SEQUENCER_PIX_REG, CONTROL_PIX_REG, LINEPAT1_REG, SEQUENCER_SUZE_REG, HEADER_REG, CONTROL_SUZE_REG, RO_MODE0, RO_MODE1 registers following the §2.3.5, §2.3.7, §2.3.8, §2.3.9, §2.3.10, §2.3.11, §2.3.12, §2.3.13, §2.3.14.

3.4 Readout

3.4.1 Signal protocol

After JTAG registers have been loaded, the readout of Mimosa26 can be initialized with following signal protocol:

- Start readout clock (CLKL);
- Set SPEAK signal to 0;
- Set START signal to 1 during 500 ns (minimum). The internal reset is created after 2 rising edge of CLKL. After this reset, CkDiv16 (input clock with 1/16 ratio) is generated;
- The readout controller starts at the first falling edge of CkDiv16 after START set to 0.

Signal markers allow the readout monitoring and the data outputs (analogue and digital) sampling:

- CLKA, CLKD and MKD are running when readout controller starts. CLKA is signal which is generated by logic OR between Read and Calib signals.
- When SPEAK signal is active, marker of synchronisation for analogue outputs is generated on MKA pad.
- Marker of synchronisation for digital outputs is generated on MKD pad, this signal is shifted of 4 rising edge of CLKL to *debuttrame* signal, MKD is set during 4 clock's rising edges of CLKD and is not depended of signal SPEAK.
- 3.4.2 Successive frames and resynchronisation

Successive pixel frames are read until the readout clock is stopped.

A frame resynchronisation can be performed at any time by setting up the "START" token again.

Figure 20: Successive frames and resynchronization timing diagram

SPEAK signal allows to generate markers signals which are used by DAQ. When SPEAK signal is set to 1 during the current frame, analogue marker appears on MKA pad during next frame.

In the MODE_SPEAK='0' (see Figure 5.a), the MKA marker corresponds to last row of the frame.

In the MODE_SPEAK='1' (see Figure 5.b), MKA signal corresponds to a sampling clock for analogue outputs data (same as CLKA) which starts at the first row of frame. When SPEAK signal is set to 0, MKA is set to 0.

December 2008

3.5 Analogue and digital Data Format

Two Types of signal can be generated on analogue outputs:

- Normal pixel signal
- Test signal

In concern to digital outputs, two types of signal can be generated:

- Digitalization pixel after zero suppression processing
- Test discriminator and test zero suppression logic:
 - Digitalization pixel signal by discriminator
 - ▶ Test pattern used by zero suppression logic, read to LINEPAT_REG register

Mimosa26 uses the pads at the bottom edge for all its operations, whatever is collecting data from the pixels (using the pixels and the discriminators) or in test mode (reproducing at the outputs the pre-programmed patterns). All the digital signals to synchronize and programming the chip are necessary to operate successfully.

Analog outputs located on the top edge of the chip are not used for the normal operations. The main purpose is to characterize the pixels or to check the dead pixels. Therefore measurements on these pads deal with normal pixel signals as well as test signals (but they still require the synchronization and the markers) and it is activated on demand by setting to 1 the *EnTestAnalog* bit in the RO_MODE1 register.

3.5.1 Normal mode data format

3.5.1.1 Introduction

This chip is the combination between Mimosa 22 and SUZE 1. The inputs are the main clock, the reset and an input synchronization (START) for initializing the readout control.

The output data of the last frame are sparsified and are sent during the acquisition of the current frame.

The outputs serializing the data of SUZE 1 with the same number of pads of Mimosa 22 include:

- A clock (CLKD),
- Two data lines (DO0 and DO1), and
- A marker (MKD).

The serial output has four configuration modes according to 2 registers *clkrate* and *dualchannel* (see §2.3.12). as shown later. <u>All the words (16 bits) are read from the LSB to the MSB</u>.

The different part of the data frame is the *Header*, *Frame counter*, *Data Length*, *States/Line*, *State*, and *Trailer*. The 2 words elements (ie *Header*, *Frame counter*, *Data Length* and *Trailer*) are divided into two parts. For

instance, the header includes Header0 (corresponds to the 16 bits LSB) and header1 (corresponds to the 16 bits MSB). The *Header*, the *Trailer* and the *Marker* signal could be used together to detect lose of synchronization.

3.5.1.2 The Clock

The clock is always present even if the data transmission is finished. Its rate depends on the clkrate register. 80 MHz or 40 MHz

3.5.1.3 Marker

The marker (MKD) is available in all modes. The *Marker* signal is set during 4 clock's rising edges and may also be used to detect the beginning of a data transmission.

3.5.1.4 Header trailer

The *Header* and the *Trailer* are composed of $2 \ge 16$ bits (header0 –header1),(trailer0 –trailer1) and allows detecting the beginning and the end of a data transmission. The *Header* and the *Trailer* are totally configurable by JTAG (the header and the trailer of each data frame can be different). The Table 1 (see §2.3.11) shows the possible *Header* and *Trailer* values.

3.5.1.5 Frame counter

Frame counter is the number of frame since the chip was reset. This counter (32 bits) is reset to 0 when the maximum is reached (FFFFFFFF in hexadecimal) and continues to work.

The *Frame counter* when separated into 2 words is given in the *Data line 0 (Frame counter 0)* with the LSB's and in the *Data line 1 (Frame counter 1)* the MSB's.

3.5.1.6 Data Length

Data Length is the number of word of 16 bits of the useful data. *Data Length* is written on 32 bits. In the case of one data line, the number of words is repeated 2 times. The sum determines the real value of the useful data

In the case of no hit during a frame, *Data Length 0* and *Data Length 1* are set to zero.

3.5.1.7 Useful data (States/Line, State)

The useful data is the daisy chain of *States/Line* and *States*.

The maximum number of the useful data bits sends during one frame is (570 words of 16 bits) 9120.

In some rare case, the number of data generated by the suppression of zeros exceeds the maximum bits capable to be sent, thus the data frame will be truncated.

The data are periodically sent at the beginning of each new frame, and the number of bits which could be sent between two headers is variable and depends on the numbers of the words recorded during the last frame.

Each data lines have the same number of bits. Consequently *Data Length 0* and *Data Length 1* are the same. *States/Line* and *State* have exactly the same meaning whatever the selected mode.

The number of words sent in a data frame depends of the number of hits. If the number of words for the two data lines is even, the last *Status* of *Data line 1* is false. This operating way allows having the same number of bits (Data length) in the both *DO0 and DO1* in every case. This false *Status* can be detect by the last *Status/Line*, because the number of *State* sent is one more than the *Status/Line* can be expected.

States/Line contains the address of the line which is hit, the number of *State* for this line (i.e. a number between one and nine), and an overflow flag.

The following table describes the signification of the bits in *Status/Line* word.

Status/ line															
0	1	2	3	4	4 5 6 7 8 9 10 11 12 13 14								15		
Bit(0-3)				Bit(0-10)											
n	Bit(0-3)Bit(0-10)number of StatesThe address of the line								OVF						

Table 2 : Description of *States/line* word

State contains the address of the first hit pixel and the number of successive hit pixels as shown on the table below.

	State												
0	1	2	3 4 5 6 7 8 9 10 11 12 13 14 15										
Bit(0-1)		Bit(0-10)										
nun	nber												
of	hit		the address of the column										od
pix	els		the address of the column not used										eu

 Table 3 : Description of State word

The table below resumes the **maximum** length of the output frame according to the selected mode.

Clk	Dual	Config.	Out	Header	Cptframe	Datalength	Number of useful	trailer	Total	Nb of
rate	channel						data		words	empty
out	out						(words of 16 bits)			words
			D00				Unused = 0			
0	0	0		Header0	Cptframe0	Datalength0	278	Trailer0	286	2
0	0	0	D01	&	&	&		&		
				Header1	Cptframe1	Datalength1		Trailer1		
0	1	1	D00	Header0	Cptframe0	Datalength0	282	Trailer0	286	2
0	1	1	D01	Header1	Cptframe1	Datalength1	282	Trailer1	286	2
			D00				Unused = 0			
1	0	2		Header0	Cptframe0	Datalength0	564	Trailer0	572	4
1	0	2	D01	&	&	&		&		
				Header1	Cptframe1	Datalength1		Trailer1		
1	1	2	D00	Header0	Cptframe0	Datalength0	570	Trailer0	574	2
1	1	5	D01	Header1	Cptframe1	Datalength1	570	Trailer1	574	2

The figure below describes the format of data send by Mimosa 26 in the one data line mode.

Figure 21: Detail of the beginning of a data frame

<u>Mode 40 MHz Mono channel</u> (clkrate = 0 and dualchannel = 0)

The maximum number of data generated by the suppression of zeros is (278 x 16) bits for the output. After this overflow, the data frame will be truncated. This mode 0 giving too little information is irrelevant but can be used as test only.

Figure 22: Format of the output Data of Mimosa 26 Mono Channel and 40 MHz

<u>Mode 40 MHz Dual channel</u> (clkrate = 0 and dual channel = 1)

The maximum number of data generated by the suppression of zeros is (282×16) bits for each output. After this overflow, the data frame will be truncated.

Figure 23: Format of the output Data of Mimosa 26 Dual Channel and 40 MHz

December 2008

<u>Mode 80 MHz Mono channel</u> (clkrate = 1 and dualchannel = 0)

The maximum number of data generated by the suppression of zeros is (564×16) bits for the output. After this overflow, the data frame will be truncated.

Figure 24: Format of the output Data of Mimosa 26 Mono Channel and 80 MHz

<u>Mode 80 MHz dualchannel</u> (*clkrate*= 1 and *dualchannel* = 1)

The maximum number of data generated by the suppression of zeros is (570×16) bits for each output. After this overflow, the data frame will be truncated.

Figure 25: Format of the output data: Mode 80 MHz dual channel

December 2008

Mimosa26 User Manual V.1.0

3.5.2 Test mode3.5.2.1 Analogue outputs, Normal pixel signal

When *EnTestAnalog* bit is set to '1' in the RO_MODE1 register, the rightmost 8 columns of pixels are connected to the analog outputs via a voltage follower and the signal is available on the pads. To start the analog test, the *EnAnaDriverScan* must be set to '1' in the RO_MODE1. The scanning of the matrix now starts and stripes of 8 pixels are connected to the analog output. The analog test is performed considering a reduced size of the array (about 576 rows x 8 columns), therefore it takes 144 frame acquisitions to analyze the full matrix. Figure 24 shows how to do the analog characterization and which parts of the matrix are under test for each frame.

The MKA is the synchronization marker for the analog outputs, see When *EnTestAnalog* bit is set to '1' it appears at the end of each frame, this signal is used to sample the analog channel of the new frame on the next raising edge of CLKA. Further when the *EnAnaDriverScan* must be set to '1', this marker appears at the end of the frame for each submatrix.

Figure 26: Analog characterization of the pixel

The matrix is divided in stripes of 8 columns and fully scanned at each frame, then swapped with the next block of 8 columns at right and so on until all the columns are analyzed.

¶ Ħ Curs	Baseline▼= 17,136,931.25 or-Baseline▼= 400ns	ins		Baseline = 17,1	136,931.25ns	TimoA - 17 197 991 25no	
Name		Cursor 🗸	17,136,400ns 17,136,8	00ns	17,137,20	10ns 17,137,331.231s	17,138,
⊑→	LastCol	0		58 68			
E	CLK_A	0					
E -	 EnTestAnalogMk 	0					
₽	 SelAnaDriver[0:143] 	'h 8000_00	0000_00000000_0000000_00000000_00000001 Data Ana Row 575			8000_00000000_00000000_00000000_00000000	
	MK_CLK_A	0		Einet Deux entet			
	OutAnaDriver[7:0]	[8 values]	[8 values]		second Row a	ad	046021/
			-2			۷.	46920 -
-1	OutAnaDriver[7]	1.98334	-1.9	Vtest1 Vtest2	Vtest1 Vtest2		
						2	046921/
	Dut épo Driver ICI	1 983341 - 4	=2	ршч	μ \Box μ		+
	- OutAnaDriver[6]	1.303347	-1.9				845861/
						2	04692V
1	OutAnaDriver[5]	1.98334	2			-	+
	, our and the fol		-1.9	8	6	1	84586V
						2.	04692V A
1	OutAnaDriver[4]	1.98334 -					÷
			-1.9			1	84586V
			-2			2.	04692V A
	+ OutAnaDriver[3]	1.98334		P - d			+
			-1.9			1	84586V
			-2	n n		2.	04692V 📤
	+ OutAnaDriver[2]	1.98334 🗧					**
			F1.9			1.	84586V -
			Ez			2.	04692V 📤
	OutAnaDriver[1]	1.98334 🚼					*‡*
			F 1.3		at a second	1.	84586V 🗸
			-2			2.	04692V A
	+ OutAnaDriver[0]	1.98334 🚼	1.9	F I			
			- 1.3 	- A.		1.	84586V 🗸

Figure 27 – Mode scan for analog output

3.5.2.2 Transfer function of discriminator and pixel digital readout calibration

This test readout mode allows obtaining the transfer function of discriminator and calibrating the digital readout (Pixel + discriminator).

Transfer function of discriminator:

During the test mode (when *EnTestDiscri bit* is set to '1' in the RO_MODE1 register), the pixel matrix is not connected to discriminators. Instead of that, one test level Vtest2 is connected to discriminator input to emulate pixel base line. The Vtest2 voltage can be adjustable via DAC and has to be chosen close to the VDISREF2 voltage. The transfer function is obtained by varying the VDISREF1voltage (A, B, C and D corresponding to the four banks).

Pixel digital readout calibration:

During the test mode (when *EnTestDiscri bit* is set to '0' in the RO_MODE1 register), the pixel is connected to discriminators. This mode allows obtaining pixel digital readout calibration.

During one frame, one row is processed and the outputs of discriminators are serialized with falling edge of CLKD (CLKL/8) and send off chip via DO0 and DO1 pads. The synchronisation marker for digital outputs is generated on MKD pad and corresponding to first bit serialized.

The pixel array calibration can be realized in automatic mode (when *En_auto_scan_discri* is set to 1, §2.3.11). In this mode, the scanning of the pixel array uses 576 frames and stop.

Synoptic

According to the synoptic, the whole line (1152 bits) is scanned and given to two shift register of 576 bits wide.

Figure 28: discriminator test block diagram

Timing diagram

Figure 29: timing diagram Sequence of the line reading

The SCANLINETST of the CONTROL_SUZE_REG Register gives the row address into the frame.

For both modes, the following bits of the CONTROL_SUZE_REG registers are set:

Bit Name	Value configuration
En_scan	1
Test_after_mux	0
entestdatadisc	1

Two modes are defined:

- When En_auto_scan_discri is set to 0, we select one row defined into SCANLINETST(0 to 23F). When this mode is started, at each frame, the selected row is scanned (the readout process is continuous). To change the row address, we define other scan line into SCANLINETST and generate a new START signal.
- When En_auto_scan_discri is set to 1, we select the row automatic scanning (from line 0 to 575) and the process stops when last row is scanned (see the Figure below).

Figure 30: scanning automatic test of the Data discriminator (En_auto_scan_discri = 1)

3.5.2.3 PLA test structure

Introduction

The PLA structure is composed of 18 identical blocks daisy chained and we check with this test only the first 3 blocks (the data frame is 160 bits wide). To simplify the test, we emulate inside the chip a matrix of 576 rows. For this purpose, the LINEPAT0_REG and LINEPAT1_REG must be used as explained on paragraphs §2.3.5 and §2.3.9. We select one row defined into SCANLINETST(0 to 23F) of the CONTROL_SUZE_REG Register. During each frame, the selected row is processed and the data outputs after PLA processing are serialized with falling edge of CLKD (CLKL/8) and transmit off chip via DO0 pad (DO1 pad is not used).

The synchronisation marker for digital outputs is generated on MKD pad and occurs at the first bit serialized.

Configuration test

Register	Bit Name	Value configuration
	En_scan	1
CONTROL SUZE DEC	En_auto_scan_discri	0
CONTROL_SUZE_REG	Test_after_mux	0
	entestdatadisc	0
RO_MODE0_REG	Pattern_Only	1
LinePatL0Reg	1151-0	User defined.
LinePatL1Reg	1151-0	User defined same as LinePatL0Reg to simplify the checking of this
		test

Synoptic

Figure 31: PLA test structure block diagram

15 16 10 5 CLKL INPUT rstline Cklatch Clkscan (CLKL/8) Loadscan En_scan = 1 5 10 15 16 OUTPUT Of The chip CLKD MKD bits Bi Word 160 bits Bit 0 Word 160 bits Bit 1 DO0 159 Scanning timing location

Timing diagram

Figure 32: PLA Test timing diagram

PLA scanning word description

The first bit outputting from the shift register is the LSB of the word (160 bits) analysed as following.

	Sta	ite 5	Sta	te 4	Sta	te 3	Sta	te 2	Sta	te 1	State 0			
Bank 2	0-1	2-7	8-9	10-15	16-17	18-23	24-25	26-31	32-33	34-39	40-41	42-47		
Duilk 2	0-1	0-5	0-1	0-5	0-1	0-5	0-1	0-5	0-1	0-5	0-1	0-5		
	Cod. ²	Ad.Col.	Cod.	Ad.Col.	Cod.	Ad.Col.	Cod.	Ad.Col.	Cod.	Ad.Col.	Cod.	Ad.Col.		

	Sta	ite 5	Sta	te 4	Sta	te 3	Sta	te 2	Sta	te 1	State 0			
Bank 1	48-49	50-55	56-57	58-63	64-65	66-71	72-73	74-79	80-81	82-87	88-89	90-95		
Dunk 1	0-1	0-5	0-1	0-5	0-1	0-5	0-1	0-5	0-1	0-5	0-1	0-5		
	Cod.	Ad.Col.	Cod.	Ad.Col.										

	Sta	ite 5	Sta	te 4	Sta	te 3	Sta	te 2	Sta	te 1	Sta	te 0
			104-	106-	112-	114-	120-	122-	128-	130-	136-	138-
Bank 0	96-97	98-103	105	111	113	119	121	127	129	135	137	143
	0-1	0-5	0-1	0-5	0-1	0-5	0-1	0-5	0-1	0-5	0-1	0-5
	Cod.	Ad.Col.	Cod.	Ad.Col.	Cod.	Ad.Col.	Cod.	Ad.Col.	Cod.	Ad.Col.	Cod.	Ad.Col.

	bank0	bank1	bank2	Not used
Status	144-146	147-149	150-152	153-159
				Value =
	0-2	0-2	0-2	000_0000

Figure 33: Format of the PLA word Test

 $^{^{2}}$ Cod is the abbreviation of Coding for the successive pixels 1 to 4, Ad. Col. Address of the column (location of the pixel inside one row)

3.5.2.4 SUZE multiplexer test

Introduction

The PLA results are combined by a multiplexer. This test allows validating the multiplexer. To realize this test, we emulate inside the chip a matrix of 576 rows. For this purpose, the LINEPAT0_REG and LINEPAT1_REG must be used as explained on paragraphs §2.3.5 and §2.3.9. We select one address row defined into SCANLINETST(0 to 23F) of the CONTROL_SUZE_REG Register. During each frame, the selected row is processed and the data outputs after multiplexer (data frame is 160 bits wide, see Figure) are serialized with falling edge of CLKD (CLKL/8) and transmit off chip via DO0 pad (DO1 pad is not used). The synchronisation marker for digital outputs is generated on MKD pad and corresponding to first bit serialized (see Figure).

Configuration test

Register	Bit Name	Value configuration
	En_scan	1
CONTROL_SUZE_REG	En_auto_scan_discri	0
	Test_after_mux	1
RO_MODE0_REG	Pattern_Only	1
LinePatL0Reg	1151-0	User defined.
LinePatL1Reg	1151-0	User defined same as LinePatL0Reg to simplify the checking of this test

Synoptic

Figure 34: MUX test structure block diagram

MUX scanning word description

The first bit outputting from the shift register is the LSB of the word (160 bits) analysed as following.

	State 0																		;	State 1											
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Е	F	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	E	F
0	1	2	3	0	1	2	3	4	5	6	7	8	9	10	15	0	1	0	1	2	3	4	5	6	7	8	9	10	u	nused	ł
	Nun	nber						R	wc						OVF	Coo	ding					Co	lumn								
																	-														
						ę	Sta	te 2	2													;	Sta	te 3	\$						
32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63
0	1	2	3	4	5	6	7	8	9	Α	В	С	D	E	F	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Е	F
0	1	0	1	2	3	4	5	6	7	8	9	10	u	nuse	d	0	1	0	1	2	3	4	5	6	7	8	9	10	u	nusec	ł
Co	ding					Со	lumn									Coo	ding					Co	lumn								
_																															
							Sta	te 4	1														Stat	te 5	;						
64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95
0	1	2	3	4	5	6	7	8	9	Α	В	С	D	E	F	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Е	F
0	1	0	1	2	3	4	5	6	7	8	9	10	u	nuse	d	0	1	0	1	2	3	4	5	6	7	8	9	10	u	nusec	ł
Co	ding					Co	lumn									Coo	ding					Co	lumn								
																							04-0								
							Sta	te 6	5														Sta	te /							
96	97	98	99	100	101	102	5ta 103	104) 105	106	107	108	109	110	111	112	113	114	115	116	117	118	5ta 119	120	121	122	123	124	125	126	127
96 0	97	98 2	99 3	100 4	101 5	102 6	5ta 103 7	104 8	105 9	106 A	107 B	108 C	109 D	110 E	111 F	112 0	113 1	114 2	115 3	116 4	117 5	118 6	5ta 119 7	120 8	121 9	122 A	123 B	124 C	125 D	126 1 E	127 F
96 0	97 1 1	98 2 0	99 3	100 4 2	101 5 3	102 6 4	Sta 103 7 5	te 6 104 8 6	105 9 7	106 A 8	107 В 9	108 C 10	109 D	110 E nuse	111 F	112 0 0	113 1 1	114 2 0	115 3 1	116 4	117 5 3	118 6 4	5ta 119 7 5	120 8 6	121 9 7	122 A	123 В 9	124 C 10	125 D	126 E	127 F

	State 8												State 9																		
128	129	130	131	132	133	134	135	136	137	138	139	140	141	142	143	144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159
0	1	2	3	4	5	6	7	8	9	Α	В	С	D	E	F	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Е	F
0	1	0	1	2	3	4	5	6	7	8	9	10	u	nuse	d	0	1	0	1	2	3	4	5	6	7	8	9	10	u	nuse	d
Coc	ling					Со	lumn									Coo	ding					Col	umn								

Figure 35: Format of the MUX word Test

<u>Caution:</u> The following range of bits unused (29:31), (45:47) (61:63) (77:79) (93:95) (109:111) (125:127) (141:143) (157:159) are undefined.

3.6 Mimosa26 Chronograms

The following chronograms describe typical access to the chip; Reset, JTAG download sequence and then the readout.

3.6.1 Normal Readout

Figure 36: Data readout mode simulation timing diagram

This figure shows the beginning of typical data readout mode. After Reset and JTAG setting, one can see the initialisation phase of the readout of the first pixel row.

Figure 37: zoom on the readout start simulation timing diagram

After a latency of 5 CkDiv16 cycles, readout of matrix starts.

Figure 38: Pipeline of the readout processing from analog to memory part simulation timing diagram

Figure 39: Test of the discriminator (1/2)

	Test_mode
	source_test_pattern_2lines
	Mode_test_discri
	write_pattern
- CAR MODE TEST	
→= en_scan	1
	0
🖽 🛶 🛱 scanlinetst	13
	1
	0
	1
🖽 👍 cptlinedisc	14 <u>(15)(16)(17)(18)(19)(20)(21)(22)(23)(24</u>
🖶 🖧 B1LigneBit[63:0]	
🖻 🖓 🖡 B10LigneBit[63:0]	AAAAAAA_AAAAAAA
CLKD	
MKD	
<u>DO0</u>	

Figure 40: Test of the discriminator (2/2)

Figure 41: Test of the PLA

CONFIGURATION	
	Test_mode
	source_test_pattern_2lines
	Mode_test_ater_mux
- 🥨 MODE TEST	
→= en_scan	1
🖽 👍 scanlinetst	13
	1
	1
	1
🕀 🐙 cptlinedisc	▶< 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
- CONTRACT MUXOUTPUT	Latch of the MUX states
⊞ F i etat9l[15:0]	0114
⊞ Fa + etat8l[15:0]	010C
⊞ 1≣-→ eta t7l[15:0]	0104
⊞ F etat6l[15:0]	<u> χοοξ</u> ρ χοο49 χοο59 χοο49 χο
⊞ Г -→ etat5l[15:0]	1 10049 10039
⊕ • eta t4l[15:0]	χου το χραφικά τη
⊞ ¶=→ eta t3l[15:0]	<u>1002</u> 8100191002910019
⊞ Fa + etat2l[15:0]	<u> (001) (0009 (0019 (0019 (0009 (0019 (0019 (0009 (0019 (0009 (0019 (0009 (0019 (0009 (0019 (0009 (0019 (0009 (0019 (0009 (0019 (0009 (0019 (0009 (0019 (0009 (0019 (0009 (0019 (0009 (0019 (0009 (0019 (0009 (0019 (0009 (0019 (0009 (0019 (0009 (0009 (0019 (000)</u>
⊞ Fa → etat1I[15:0]	1 1000 1000
⊕ F etat0 [15:0]	80BD 80C9 80D9 80E9 80F9 8109 8129 8129 8129 8139 8149 8159 8169 8179 8189 8199 8189 8169 8169 8169 8169 816
- 🐢 OUTPUT	
CLKD	
MKD	
DO0	
🛶 Unsed PAD	$9 \\ B \\ 0 \\ 8 \\ 9 \\ 0 \\ 0 \\ 0 \\ 9 \\ 1 \\ 0 \\ 9 \\ 1 \\ 0 \\ 0 \\ 9 \\ 1 \\ 0 \\ 0 \\ 0 \\ 9 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$
DO1 (unused)	
	State0[15:0] State1[15:0] State2[15:0] Lintil State0[15:0]

Figure 42: Test of the MUX

Figure 43: Normal working mode: Clkrate = 0 Dualchannel = 0

Figure 44: Normal working mode: Clkrate = 1 Dualchannel = 0

- CORMAL						
	1					
	0					
	1					
- 🐢 FORMAT						
🖶 ភ header2	DAAA					
🖶 🝜 header1	5555					
🖽 🖣 trailer2	АААА					
🖶 👍 trailer1	АААА					
- 🐢 MODE TEST						
→ en_scan	0					
→ Pattern_Only	1					
→ clk						
🖽 👍 cptlinedisc	2 <u>(</u> 3	χ4 χ5)(6)(7	<u>) (8</u>) (9)	χ10 χ11)(12
uation 🛱 🕂 🛱 🖕	00 xxxx	(8009			<u>)</u> 0009	X0029
u do2[15:0]	01 XXXX	0000			X 0019	X0039
🕂 🚋 framecpt[31:0]	00• <u>(</u> 00000	003				
⊡⊊ nml[9:0]	256					
- CUTPUT						
CLKD						
MKD			1			
DO0		5 5 5 5				
DO1		SPHERE				
		Header1	frameCpt[15:0]	nmi[15:0]	Status0	
		Header2	trameCpt[31:16]	Nml/2[31:16]	Status1	

Figure 45: Normal working mode: Clkrate = 0 Dualchannel = 1

Figure 46: Normal working mode: Clkrate = 1 Dualchannel = 1

3.6.3 Main Signal Specifications

	Parameter	Typical Value	Notes
INIT	RSTB Pulse Width	>1 µS	Active Low, Asynchronous Power on Reset
	TCK Frequency	10 MHz	Boundary Scan Clock
JTAG	TMS Setup/Hold Time	~10 nS	Boundary Scan Control Signal
	TDI Setup/Hold Time	~10 nS	Boundary Scan Serial Data In
READOUT	CKRD Frequency	Up to 80 MHz	Readout Clock LVDS signal
	CKRD Duty Cycle	50%	
	SYNC Setup/Hold Time	5 nS	Chip Initialisation, CMOS signal. Starts after falling edge on 1rst CKRD sampling
	Input Dynamic range	0.7 up to 1.2 V	
D : 00	Rise time	5 nS	@ 10-90%, for fully input dynamic range
Differential	Fall time	5 nS	Simulated with $Z_{load} = 2*100$ Ohm and $2*5pF$
Buffer (1)	Bandwidth	200 MHz	@ -3 dB
	Transconductance gain	5.8 mS	
	Output Current Range	-2.2; 2.2 mA	
	Input Dynamic range		
	Rise time		
Analogue	Fall time		
	Bandwidth		
	Output Current Range		

Note 1: The differential current output buffer can be modeled as an ideal current source. Its performances in terms of raising and falling times are limited by its load's time constant (R_{load} x C_{load})

Note 2: Simple source follower

4 Pad Ring

The pad ring of Mimosa26 is build with

- Pads full custom designed for some of the analogue signals and power supplies
 Pads from the AMS library for the digital signals and power supplies
- The pad ring is split in 8 functional independent parts
 - CMOS JTAG and Test purpose pads
 - LVDS Read Out Drivers
 - Digital outputs
 - Read Out Analogue Outputs
 - Bias Test
 - Analogue and Digital Power supplies
 - Test structure

4.1 Mimosa26 plus Pad Ring and Floor Plan View

4.2 Pad List

The bonding of the power supply pads specified in red colour is mandatory

	Pad ring segment 1				
Pad	Name	Description	Cell	Туре	
1	TEMP	Temperature sensor	DIRECTPAD	Direct pad	
2	gnda	Output buffer ground			
3	VDiscriRef1A	VDiscriRef1 (Bank A), external injection	APRIOP	AIO 0 Ohm	
4	gnda				
5	VDiscriRef1B	VDiscriRef1 (Bank B), external injection	APRIOP	AIO 0 Ohm	
6	vdda	analogue power	AVDD3ALLP	power	
7	VDiscriRef1C	VDiscriRef1 (Bank C), external injection	APRIOP	AIO 0 Ohm	
8	vdda	analogue power	AVDD3ALLP	power	
9	VDiscriRef1D	VDiscriRef1 (Bank D), external injection	APRIOP	AIO 0 Ohm	
10	gnda				
11	VDiscriRef2A	VDiscriRef2 (Bank A), external injection	APRIOP	AIO 0 Ohm	
12	gnda				
13	VDiscriRef2B	VDiscriRef2 (Bank B), external injection	APRIOP	AIO 0 Ohm	
14	vdda	analogue power	AVDD3ALLP	power	
15	VDiscriRef2C	VDiscriRef2 (Bank C), external injection	APRIOP	AIO 0 Ohm	
16	vdda	analogue power	AVDD3ALLP	power	
17	VDiscriRef2D	VDiscriRef2 (Bank D), external injection	APRIOP	AIO 0 Ohm	
18	gnda				
19	Vtest	Vtest, external injection	APRIOP	AIO 0 Ohm	
20	gnda				
21	Itest	<i>P</i>		power	
22	vdda	Output buffer supply	AVDD3ALLP	power	
23	vdda	Output buffer supply	AVDD3ALLP	power	
24	vdda	Output buffer supply	AVDD3ALLP	power	
25	gnda				
26	gnda				
27	gnda				
X1	VDiscriClp				
28	CLKA	Readout clock for analogue data	BT4P	D0 3-state, 4 mA	
29	Not Connected				
30	MKA	Marker and clock for analogue data	BT4P	D0 3-state, 4 mA	
31	Not Connected				
32	vdd				
33	TMS	JTAG mode state	ICUP	DI-pullup	
34	Not Connected				
35	TDI	JTAG data input	ICUP	DI-pullup	
36	Not Connected				
37	TCK	JTAG clock	ICCK2P	DI - clockin	
38	Not Connected				
39	TDO	JTAG data output	BT4P	D0 3-state, 4 mA	
40	Not Connected				
41	vdd	D. 1	DEDD		
42	TestIPad	Readout test pad 1	BT2P	D0 3-state, 2mA	
43	gnd		DTOD		
44	Test2Pad	Readout test pad 2	BT2P	DU 3-state, 2mA	
45	gnd				
∥ 46	gnd		1	1	

47	Test3Pad	Readout test pad 3	BT2P	D0 3-state, 2mA
48	vdd			
49	Test4Pad	Readout test pad 4	BT2P	D0 3-state, 2mA
50	vdd			
51	vdd			
52	SPEAK	Active readout marker and clock for analog	ICPD	DI- pulldown
53	Not Connected			
54	gnd			
55	gnd			
56	Not Connected			
57	CLKL_p	Master clock, LVDS compatible	LVDS-RX	DI LVDS
58	CLKL_n	Master clock, LVDS compatible	LVDS-RX	DI LVDS
59	Not Connected			
60	vdd			
61	vdd			
62	CLKC	Master clock, CMOS compatible	ICCK2P	DI clockin
63	Not Connected			
64	START	Synchronize the outputs	ICPD	DI- pulldown
65	Not Connected			
66	RSTB	Asynchronous reset, active low	ISUP	DI – pullup, schmitt
67	Not Connected			
68	gnd			
69	gnd			
70	vdd			
71	vdd			
72	vdd			
73	vdd			
74	vdd_latch			
/5	vdd_latch			
/6	vdd_latch			
70	gnd_latch			
70	gild_latch			
80	y cln	Clamping voltage for pixels	DIRECTRAD	Direct pad
81	v_clp	Clamping voltage for pixels	DIRECTPAD	Direct pad
82	v_clp	Clamping voltage for pixels	DIRECTPAD	Direct pad
83	v_clp	Clamping voltage for pixels	DIRECTPAD	Direct pad
84	gnda			
85	gnda			
86	gnda			
87	gnda			
88	gnda			
89	gnda			
90	gnda			
91	gnda			
92	gnda			
93	gnda			
94	vdda	analogue power	AVDD3ALLP	power
95	vdda	analogue power	AVDD3ALLP	power
96	vdda	analogue power	AVDD3ALLP	power
97	vdda	analogue power	AVDD3ALLP	power
98	vdda	analogue power	AVDD3ALLP	power
99	vdda	analogue power	AVDD3ALLP	power
100	vdda	analogue power	AVDD3ALLP	power
101	vdda	analogue power	AVDD3ALLP	power
102	vdda	analogue power	AVDD3ALLP	power
103	vdda	analogue power	AVDD3ALLP	power

104	vdda	analogue power	AVDD3ALLP	power
105	vdda	analogue power	AVDD3ALLP	power
106	gnd_mem			
107	gnd_mem			
108	gnd_mem			
109	gnd_mem			
110	vdd mem			
110	vdd mem			
111	vdd mem			
112	vdd mem			
113	vdd mem			
114	WR	Write signal of memory	BT2P	D0 3-state, 2mA
115	gnd			
116	Fifoinitok	FIFO initialization flag	BT2P	D0 3-state, 2mA
117	and		2121	
118	Not Connected			
110	DO1 n	Data output_channel 1	LVDS-RX	DOLVDS
120	D01_n	Data output, channel 1	LVDS-RX	DOLVDS
120	Not Connected			
121	and			
122	Not Connected			
123	DO0 n	Data output, channel 0		DOTVDS
124	D00_11	Data output, channel 0		DOLVDS
125	Not Connected		LVDS-KA	
120	vdd			
127	Not Connected			
120	MKD n	Markor for digital data		DOTADS
129	MKD_II MKD_n	Marker for digital data		
121	Not Connected		L V DS-KA	
122	and			
132	gilu Not Connected			
133	CLKD n	Paadout alook for digital data		DOLVDS
134	CLKD_II	Readout clock for digital data	LVDS-KA	
133	Vot Connocted	Readout clock for digital data	L V DS-KA	
130	Not Connected	Data hus moment	DTID	D0.3 state $2mA$
137	Datawieni<0>	Data bus memory	D12F	D0 5-state, 211A
130	gilu DataMam (1)	Data hua mamany	DTOD	D0.2 state 2mA
139	Datawieni<1>	Data bus memory	DIZP	D0 5-state, 2mA
140	gilu DataMam (2)	Data hua mamany	DTID	D0.2 state 2mA
141	Datawieni<2>	Data bus memory	D12r	D0 5-state, 211A
142	Vuu DataMam <2>	Data hua mamany	DTOD	D0.2 state 2mA
143	vdd			DU J-State, 2111A
144	DataMam <4>	Data hus memory	втрр	D0.3 state $2m$ Å
143	vdd			DU J-State, 2111A
140	Vuu DataMam <5	Data hus momory	BTJD	$D0.3$ state $2m^{A}$
14/	vdd			DU J-State, 2111A
140	Vuu DataMam (6)	Data hus momory	BTJD	D0.3 state $2m$ A
149	vdd		DIZE	
150	Vuu DotoMam -7	Data hua mamarri	DTID	D0.3 state 2m A
151	Datament		DIZE	
152	Vuu DotoMam (⁰)	Data hus mamory	DTID	D0.3 state 2m A
155	Datameni<8>	Data bus memory	DIZM	DU 5-state, 2IIIA
154	Vuu DataMarra O	Data hua maman	DT2D	D0.2 state 2st A
155	DataMem<9>	Data bus memory	<u> Б12Р</u>	DU 3-state, 2mA
156		Deta har anna an	DTOD	
157	DataMem<10>	Data bus memory	BT2P	DU 3-state, 2mA
158	Vdd	Deta har anna an	DTOD	
159	DataMem<11>	Data bus memory	B12P	DU 3-state, 2mA

160	vdd			
161	DataMem<12>	Data bus memory	BT2P	D0 3-state, 2mA
162	vdd			
163	DataMem<13>	Data bus memory	BT2P	D0 3-state, 2mA
164	gnd	· · · · · · · · · · · · · · · · · · ·		
165	DataMem<14>	Data bus memory	BT2P	D0 3-state, 2mA
166	and			
167	DataMem<15>	Data hus memory	BT2P	D0 3-state 2mA
168	and		D121	
160	CS	Chin select	втр	D0.3-state $2mA$
170	and		D121	
170	solnimn	Internal signal for the test	BTJD	D0.3 state $2mA$
171	and		DIZI	
172	SVNCHPO	Internal signal synchro	DTID	D0.3 state $2mA$
173	and		D12r	D0 5-state, 211A
174				
1/5	vdd_latch			
1/6	vdd_latch			
1//	vdd_latch			
178	gnd_latch			
179	gnd_latch			
180	gnd_latch			
181	v_clp	Clamping voltage for pixels	DIRECTPAD	Direct pad
182	v_clp	Clamping voltage for pixels	DIRECTPAD	Direct pad
183	v_clp	Clamping voltage for pixels	DIRECTPAD	Direct pad
184	v_clp	Clamping voltage for pixels	DIRECTPAD	Direct pad
185	gnda			
186	gnda			
187	gnda			
188	gnda			
189	gnda	1		
190	vdda	analogue power	AVDD3ALLP	power
191	vdda	analogue power	AVDD3ALLP	power
192	vdda	analogue power	AVDD3ALLP	power
193	vdda	analogue power	AVDD3ALLP	power
194	vdda	analogue power	AVDD3ALLP	power
195	vdd			
196	gnd			
197	REFCLK	Clock reference for PLL	ІССК2Р	DI clockin
198	gnd			
199	vdda			
200	gnd			
201	Dout_n			
202	Dout_p			
203	vdd			
204	Start_8b10b			
205	gnd			
206	gnd			
207	BitClock_p			
208	BitClock_n			
209	vdd			
X2	gnd			
X3	CLKPLL_n			
X4	CLKPLL_p			
X5	vdd			
210	Not Connected			

	Pad ring segment 2				
Pad	Name	Description	Cell	Туре	
211	gnd				
212	Not Connected				
213	vdda	analogue power	AVDD3ALLP	power	
214	Not Connected				

	Pad ring segment 3				
Pad	Name	Description	Cell	Туре	
215	OutAnaDriver<0>	Analog output<0> test mode	g_pad	Test pad	
216	Not Connected				
217	OutAnaDriver<1>	Analog output<1> test mode	g_pad	Test pad	
218	Not Connected				
219	OutAnaDriver<2>	Analog output<2> test mode	g_pad	Test pad	
220	Not Connected				
221	OutAnaDriver<3>	Analog output<3> test mode	g_pad	Test pad	
222	Not Connected				
223	OutAnaDriver<4>	Analog output<4> test mode	g_pad	Test pad	
224	Not Connected				
225	OutAnaDriver<5>	Analog output<5> test mode	g_pad	Test pad	
226	Not Connected				
227	OutAnaDriver<6>	Analog output<6> test mode	g_pad	Test pad	
228	Not Connected				
229	OutAnaDriver<7>	Analog output<7> test mode	g_pad	Test pad	

4 Index of the figures

Figure 1 : Mimosa26 functional view	4
Figure 2: top view implementation of SUZE in MIMOSA 26	5
Figure 3: SUZE block diagram	6
Figure 4: PLA block diagram	7
Figure 5: format of the PLA results	8
Figure 6: Synchronization signals for PLA timing diagram	8
Figure 7: Multiplexor top view	9
Figure 8: Synchronization signals for MUX 6 x 9 \rightarrow 9 top view	9
Figure 9: Module 6 x 9 \rightarrow 9 top view	10
Figure 10: Module 6 x 9 \rightarrow 9 top view	11
Figure 11: format of the Mux results	11
Figure 12: Memory management top view	12
Figure 13 : Example: Generation of Latch Signal	19
Figure 14 : Simulation timing diagram for signals of SEQUENCER_PIX_REG (1)	19
Figure 15 : Simulation timing diagram for signals of SEQUENCER_PIX_REG (2)	20
Figure 16 : Generation of the test frame pattern	22
Figure 17 : Simulation timing diagram for signals of SEQUENCER_SUZE_REG	23
Figure 18: Cfg multiplexors configuration	26
Figure 19: Bias synthetic block diagram	31
Figure 20: Successive frames and resynchronization timing diagram	32
Figure 21: Detail of the beginning of a data frame	35
Figure 22: Format of the output Data of Mimosa 26 Mono Channel and 40 MHz	36
Figure 23: Format of the output Data of Mimosa 26 Dual Channel and 40 MHz	36
Figure 24: Format of the output Data of Mimosa 26 Mono Channel and 80 MHz	37
Figure 25: Format of the data: Mode 80 MHz dual channel	37
Figure 26: Analog characterization of the pixel	38
Figure 27 – Mode scan for analog output	39
Figure 28: discriminator test block diagram	40
Figure 29: timing diagram Sequence of the line reading	41
Figure 30: scanning automatic test of the Data discriminator (En_auto_scan_discri = 1)	41
Figure 31: PLA test structure block diagram	42
Figure 32: PLA Test unning diagram	43
Figure 55: Formal of the PLA word Test	43
Figure 34: MUX lest structure block diagram	44
Figure 35: Format of the MUX word fest	43
Figure 30. Data readout mode simulation timing diagram	40
Figure 37. Zoolii oli the readout start simulation timing diagram analog to momory part simulation timing diagra	47
Figure 58. Fipeline of the readout processing from analog to memory part sinulation timing diagra	.111 17
Figure 30: Test of the discriminator $(1/2)$	47
Figure 40: Test of the discriminator $(1/2)$.	+0
Figure 41: Test of the PI Δ	7
Figure 42: Test of the MUX	- 7 50
Figure 43: Normal working mode: Clkrate $= 0$ Dualchannel $= 0$	
Figure 44: Normal working mode: Clkrate $= 1$ Dualchannel $= 0$	51
Figure 45: Normal working mode: Clkrate = 0 Dualchannel – 1	
Figure 46: Normal working mode: Clkrate = 1 Dualchannel = 1	

5 Glossary, Abbreviations and acronyms tables.

Abbreviation or acronym	Meaning	Description		
ETU	Elementary Time Unit	$ETU = 1 timeclock = \frac{1}{main _chip _ frequency} = \frac{1}{100 MHz} = 10 ns$		
SUZE	Suppression of zeroes			
AD	Address			
D	Data			
TCK	Test clock	Cf. JTAG interface IEEE 1149		
TMS	Test	Cf. JTAG interface IEEE 1149		
	Management			
	System			
TDI	Test Data Input	Cf. JTAG interface IEEE 1149		
TDO	Test Data Output	Cf. JTAG interface IEEE 1149		
FIFO		Memory First In first Out,		
LVDS		Low voltage differential signalling		
PLA	Priority Look	Asynchronous way to access from a hit to another hit. The next one has the priority		
	Ahead			
MUX	Multiplexer	Structure that catches only nine groups of pixels among 6 x 18 groups.		
	-	The first 9 states are kept.		
PLA	Priority Look	Asynchronous way to access from a hit to another hit. The next one has the priority		
	Ahead			

Word or locution	Description or explanation
Frame	The frame is a set of line, here compound of MaxAdrRow lines.
Line duration	In default mode, 160 ns i.e. 16 times the period of the main clock 100 MHz.(10 ns)
Frame duration	= duration line x the content of the cycleMax register.