

SSD Survey Update

Jim Thomas

Lawrence Berkeley National Laboratory 3/21/2013

The SSD

- Who:
 - Bob Connors is the expert. Joe Silber and Hans Georg have done Yeoman work.
- What:
 - Multiple targets on each Si module, measure relative to pin on end
 - Mounts on OSC need to be surveyed at LBL
- When:
 - Winter & Spring 2013
- Where:
 - LBL shops
- Why:
 - Survey will give position of silicon sensor with respect to the mount points on the OSC
- How:
 - Optical survey machine at LBL (already exists)
- Schedule:
 - Expected to be able to survey 2 ladders per day, so approximately two weeks to do all 20 ladders ... currently about 1 per week ⊗

The Theoretical Geometry Model

- Two "single" star targets, one on each end
 - visible on front and back
- Fourteen "double star" targets, seven on each side
- Jim Thomas LBL visible only from the front side

What do we know?

The hallmark (or punch)

STAR-SSD sensor geometrical specification, according to documents used to order the sensors and measurements. J.Baudot 2012/04/02, updated 2012/04/20 Updates by Jim Thomas, based on LBL Survey 3/30/2013

Detail on Module structure

Coordinate system parallel to the detector edges

Geometry – Assume "A" edge toward pin

"A" edge of chip – toward pin Pin side of ladder is labeled "P" side Pa and Pb stripes are face up for survey, Na and Nb are on the backside, normally not visible.

Not to Scale

Calculating the Coordinates of a hit

Assume straight lines of the form: y = mx + b For 1 hit, we must assume x = 0 and then: y = 36082.5 - (NumberPa-1)*95 or y = -36082.5 + (NumberNb-1)*95


```
Pa Stripes: Slope = -0.0175, Intercept = 36082.5 - (NumberPa-1)*95
Pa Stripes: Slope = -0.0175, Intercept = (768-1)*95/2 - 0.0175*20000 - (NumberPa-1)*95
Nb Stripes: Slope = 0.0175, Intercept = -36082.5 + (NumberNb-1)*95
Nb Stripes: Slope = 0.0175, Intercept = -1*(768-1)*95/2 + 0.0175*20000 + (NumberNb-1)*95
With 2 hits, one on each side of the wafer, then:
x = (b(Nb)-b(Pa)) / 2*m(Pa) and y = (b(Nb) + b(Pa)) / 2
x = (768 - (NumberNb + NumberPa) + 1) * 95 / (2*0.0175) - 20,000 and y = (NumberNb - NumberPa) * 95/2
```

Pictures

Target on end of wafer (backside)

Targets on edges of wafer (front)

8

Philosophy: start from the module and work outwards

- Measure location of strips relative to targets (one wafer)
- Measure location of targets on wafers relative to pin (all)
- Repeat for all ladders
- Check gravity sag on one ladder (this can be done on Zeiss)
 - Assume that 0° and 90° are sufficient to characterize sag
 - Repeat 90° measurement on all ladders if necessary
- Record and manage data
- Design, glue, and survey location of mounts on OSC
- Develop mathematical transforms from strip to target to pin to OSC mount to STAR Global Coordinate system
- Record and store in STAR qualified DB

Results

dX0	-0.336
dY0	0.359
dZ0	-0.072
Rot(Rad)	-0.008
ResX	0.009
ResY	0.008
ResZ	0.079
dX0	0.028
dY0	-0.001
dZ0	-0.158
Rot(Rad)	0.000
ResX	0.005
ResY	0.007
ResZ	0.179

- We have surveyed 3 ladders
- We know the mean displacement of each wafer from its ideal location and rotation angle wrt ideal
 - Typically, the first wafer is far from the ideal location
 - Other wafers are usually very close (10 or 20 μ m)
- Z location of the center of each wafer is strongly dependent on location on ladder due to gravity sag

- Curiously, most of the wafers are also "bent" in the middle
 - 9 point survey so the bend is probably a smooth curve
 - Perhaps due to gravity sag during gluing on the ladder?

Summary

- Data looks good
 - Reproducible
 - Accurate to at least 20 μm ... probably better
 - Survey procedures seems robust and reliable
 - Data formats are well defined and easy to use
- We have located two the errors in documentation
 - Targets top and bottom of "box" are 780 μ m off the box
 - Targets left and right are 817.5 μ m off the edges of the box
- Wafers are not in the theoretically designed position
 - X,Y misalignments up to 0.5 mm (usually first/last wafer on ladder)
 - Wafers are bent or folded.
 - Of order 200 μm
 - Is this important?
 - Z displaced from neutral position by gravity 50 to 150 μm
 - Is this important?
 - If so, will have to calculate the sag for each orientation on OSC

Backup Slides

Software proposal


```
void GetHit( Int_t &nPa, Int_t &nNb, Int_t &Wafer, Int_t &Ladder )
{
 // Get and return nPa, nNb, Wafer number and Ladder number
 // nPa is the strip number on the P side, nNb is the strip number on the N side
}
void xyzLadder( Float_t xWafer, Float_t yWafer, Int_t Wafer, Int_t Ladder, Float_t
      xLadder[])
{
 // Convert from local wafer coordinates to ladder coordinates
 // Compensate for rotation and bend of wafers but do not correct for gravity or phi
      (yet)
}
void xyzOSC( Float_t xLadder[], Int_t Wafer, Int_t Ladder, Float_t xOSC[] )
{
 // Convert from Ladder coordinates to OSC coordinates
 // Compensate gravity and phi location effects on OSC
}
void xyzSTAR( Float_t xOSC[], Float x[] )
{
 // Convert from OSC reference frame to STAR reference frame
}
```

Int_t xyWafer(Int_t nPa, Int_t nPb, Float_t &xWafer, Float_t &yWafer) {

// Convert hits on strips to local X,Y coordinates on the wafer // Wafer has 768 strips on each side of the wafer (starting from 1) Float_t Slope = 0.0175 ; // Slope of the strips on the wafer (Radians) Float_t Pitch = 95.0 ; // Distance between strips along the Y axis (microns) Float_t Width = 40000.0 ; // Width of active region on wafer along X axis (microns)

```
if ( nPa == 0 || nPa > 768 ) && (nNb == 0 || nNb > 768 )
 return 0 ;
if ( nNb == 0 || nNb > 768 )
 {
  xWafer = 0.0;
  yWafer = (768-1)*Pitch/2.0 - Slope*Width/2.0 - (nPa-1)*Pitch ;
else if ( nPa == 0 || nPa > 768 )
 {
  xWafer = 0.0 ;
  yWafer = (768-1)*Pitch/2.0 - Slope*Width/2.0 - (nNb-1)*Pitch ;
  yWafer *= -1.0 ;
 }
else
 {
  xWafer = (768 - (nNb + nPa) + 1) * Pitch / (2.0*Slope) - Width/2.0 ;
  yWafer = (nNb - nPa) * Pitch/2.0;
}
return 1;
```

}

The SSD

The Lorentz Force affects the SSD

- Lorentz effect :
 - Trajectory of electrons/holes are modified due to the combination of the STAR magnet B-field and the SSD wafer E-field (vxB)

- Observation from data :
 - Shift in <z> direction of the order of 200 μm depending on the B-field orientation.
 - Oops. Not all shifts explained by sign and Mag of B. (?)
 - Jonathan Bouchet

Lorentz Effect Corrections ... already in code STAR HFT

- Values from CMS
 - $\theta_L = 21^\circ$ for electrons and $\theta_L = 8^\circ$ for holes
 - T =280 K and V_{bias} = 40 V http://arxiv.org/pdf/physics/0204078v2.pdf
- Normalized to STAR B-Field

 $tan(\theta_L^{STAR}) = \arctan(\tan(\theta_L^{CMS}) \times \frac{B^{STAR}}{RCMS}) \qquad \qquad \theta_e = 4.4 \circ \theta_e = 1.6 \circ \theta_e =$

$$\Delta(x) = \tan(\theta_L^{STAR}) \times d \qquad \qquad \Delta x = 12 \ \mu m \text{ for electrons} \\ \Delta x = 4.2 \ \mu m \text{ for holes}$$

d = drift distance along the E-field (d =150 microns, half-thickness of the wafer)

Thus the anode and cathode strips will experience different distortions on the two sides of the detector. When reconstructed, this leads to a distortion in the Z direction approximately equal to $\tan(\theta_e - \theta_h)^* d / \tan(\theta_{ac})$ or about 210 µm.

Jonathan Bouchet