Zee Trouble with Zee HPD:

It is interesting to compare the performance of the IST1+IST2 tracker to the performance of the HPD+SSD tracker as a pointing device for the HFT.

I will do this under fairly conservative conditions (meaning difficult conditions) ... which means RHIC II running conditions and Au-Au minbias collisions. The full parameter set is listed at the end of this note.

Figure one is a graph of the R-Phi resolution for the two cases. The upper blue line shows the pointing resolution of the IST1+IST2 tracker for a kaon entering the outer layer of the HFT (HFT2). The IST detectors are located at 12 cm and 17 cm, respectively. The lower blue line shows the pointing resolution of the HFT2+IST1+IST2 system onto the inner layer of the HFT (HFT1). The pointing resolution onto HFT1 is mostly determined by the intrinsic resolution of HFT2, and the MCS in HFT2, but is not very sensitive to the performance of the IST layers.

The green lines show the performance of the HPD+SSD tracking system. It is better ... and you can see the complex interplay between resolution and MCS as a function of pt.

Figure 1: The blue lines show the R-Phi pointing resolution for the IST1+IST2 tracker onto the outer surface of the HFT (upper line) and the inner surface of the HFT (lower line). The green lines show the pointing resolution of the HPD+SSD tracker. The dashed line at the bottom is a theoretical estimate of the HFT vertex resolution if the HFT could act alone ... no other detectors, and no other sources of MCS.

The R-Phi resolution of the HPD+SSD system is better than the IST1+IST2 system because the HPD has very fine strips (50 microns) and it is closer to the outer surface of the HFT and thus also has a shorter lever arm to amplify the effects of MCS. The HPD does not suffer from a serious occupancy problem because the strips are relatively short (425 microns) and the total area presented to the flight of a particle is small.

However, the relative performance of the detectors is reversed when we consider the pointing resolution in the Z direction.

Figure two is a graph of the Z pointing resolution for the two cases. The upper blue line shows the pointing resolution of the IST1+IST2 tracker onto the outer surface of the HFT (HFT2). The lower blue line shows the pointing resolution of the HFT2+IST1+IST2 system onto the inner layer of the HFT (HFT1). The green lines represent the same two cases for the HPD+SSD tracker. Zee problem is that zee strips in the HPD are aligned with zee strips in the SSD ... and so the Z resolution on the outer surface of the HFT is merely the length of the HPD strips and is constant as a function of pt.

Figure 2: The blue lines show the Z pointing resolution for the IST1+IST2 tracker onto the outer surface of the HFT (upper line) and the inner surface of the HFT (lower line). The green lines show the pointing resolution of the HPD+SSD tracker.

The essential difference between the two cases shown in figure 2 is that the HPD+SSD system doesn't have any Z resolution (relatively speaking). The TPC has 500-600 micron resolution. The SSD has worse Z resolution than the TPC, and the HPD is limited by the length of its strips. So the Z resolution is barely improved over what the TPC can

do, alone. On the other hand, the IST1+IST2 tracker achieves relatively good Z resolution because IST layer 2 is assumed to be rotated by 90 degrees.

Is the poor Z resolution of the HPD+SSD important? Yes, it turns out to be noticeable. The reason it become important is because the intermediate tracker is used to define an 'area' on the outer surface of the HFT and this area searched for good hits. The area is elliptical in shape, where $A = 2\pi R_{R-Phi} R_Z$, and if this area is large enough relative to the occupancy and pileup in the HFT, then we can begin to collect false hits. This effect is shown in Figure 3.

Figure 3: The solid blue line shows the efficiency for finding a kaon in both layers of the HFT with the IST1+IST2 tracker. The green line shows the efficiency for finding the kaon with the HPD+SSD tracker. The dashed lines represent the square of the solid lines (times 0.8 to displace the curves) and is a very crude estimate of the D0 track finding efficiency in each case.

I don't know what effect an elliptical search zone has upon the ITTF tracker when the major and minor axes differ by a factor of 5 ... but on paper, at least, it is the same as a circle of the same area.

The bottom line is that the HPD is a beautiful detector, however, its performance is limited by the fact that its strips are aligned with the strips in the SSD and it could, in principle, do better if we could rotate the direction of the strips of the SSD.

The wonderful thing about hand calculations is that I can do it ... and that is what is shown in Figure 4.

Figure 4: The solid blue line shows the efficiency for finding a kaon in both layers of the HFT with the IST1+IST2 tracker. The green line shows the efficiency for finding the kaon with the HPD+SSD tracker. The red line shows the efficiency for finding the kaon with the HPD+SSD tracker under the hypothesis that the SSD layer has been rotated 90 degrees. The region of most interest is from 750 MeV to 1 GeV.

Parameters used in these calculations:

#define	Mass	0.540	<pre>// Mass of the test particle in</pre>
#define	BFIELD	0.5	// Tesla (test data taken at 0.25
#define	AvgRapidity	0.5	// Avg rapidity, MCS calc is a
#define	Luminosity	1.e28	// Luminosity of the beam (RHIC I ==
#define	Sigma	15.0	// Size of the interaction diamond
#define	dNdEta	170	// Multiplicity per unit Eta (AuAu
#define	CrossSection	10	// Cross section for event under
#define	IntegrationTime	0.2	// Integration time for HFT chips (
#define	BackgroundMultiplier	4.0	<pre>// Increase multiplicity in detector</pre>
#define	SiScaleFactor	1.0	// For scaling Si pad sizes. (eg
#define	EfficiencySearchFlag	0	// Define search method. ChiSquare =
// Most likely	Detector parameters you	may want to	tune are in the block starting here:
#define	VtxResolution	0.3000	// cm Test data wants 3 mm vertex
#define	VtxResolutionZ	0.3000	// cm Test data wants 3 mm vertex
#define	NewVtxResolution	0.0300	<pre>// cm NewVertex to study effect of a</pre>
#define	NewVtxResolutionZ	0.0300	// cm NewVertex to study effect of a
#define	RefitVtxResolution	0.0030	// cm Refit Vertex to study effect
#define	RefitVtxResolutionZ	0.0030	<pre>// cm Refit Vertex to study effect</pre>
#define	BeamPipelResolution	RIDICULOUS	// Beampipe is not active as a
#define	HttlResolution	0.0030	// cm 30 x 30 micron pixels
#define	Hft1ResolutionZ	0.0030	// cm 30 x 30 micron pixels

#define	Hft2Resolution	0.0030	// cm 30 x 30 micron pixels
#define	Hft2ResolutionZ	0.0030	// cm 30 x 30 micron pixels
#define	BeamPipe2Resolution	RIDICULOUS	// Beampipe is not active as a
#define	HpdResolution	0.0050	// cm 50 x 425 micron pixels
#define	HpdResolutionZ	0.0425	// cm 50 x 425 micron pixels
#define	IstlResolution	0.0060	// cm 60 x 1920 micron pixels Z
#define	IstlResolutionZ	0.1920	// cm 60 x 1920 micron pixels
//#define	Ist1Resolution	0.1920	// cm 60 x 1920 micron pixels
//#define	Ist1ResolutionZ	0.0060	// cm 60 x 1920 micron pixels
//#define	Ist2Resolution	0.0060	// cm 60 x 1920 micron pixels
//#define	Ist2ResolutionZ	0.1920	// cm 60 x 1920 micron pixels
#define	Ist2Resolution	0.1920	// cm 60 x 1920 micron pixels
#define	Ist2ResolutionZ	0.0060	// cm 60 x 1920 micron pixels
#define	SsdResolution	0.0095	// cm 95 x 4200 microns double
#define	SsdResolutionZ	0.2700	// cm 95 x 4200 microns double
#define	IFCResolution	RIDICULOUS	// IFC is not active as a detector
#define	TpcResolution	0.0575	// cm 600 x 1500 micronsTest
#define	TpcResolutionZ	0.1500	// cm 600 x 1500 micronsTest

 $\ensuremath{{\prime}}\xspace$ // End of 'most likely' block, but there are more parameters, below.

#define	VtxIndex	0
#define	BeamPipelIndex	1
#define	HftlIndex	2
#define	Hft2Index	3
#define	BeamPipe2Index	4
#define	HpdIndex	5
#define	IstlIndex	б
#define	Ist2Index	7
#define	SsdIndex	8
#define	IFCIndex	9
#define	TpcIndex	10
#define	VtxThickness	0.0000 // % Radiation Lengths
#define	BeamPipelThickness	0.0015 // % Radiation Lengths (as in 0.01 == 1%)
#define	Hft1Thickness	0.0028 // % Radiation Lengths (0.0028 new 0.0036
#define	Hft2Thickness	0.0028 // % Radiation Lengths (0.0028 new 0.0036
#define	BeamPipe2Thickness	0.0015 // % Radiation Lengths
#define	HpdThickness	0.0100 // % Radiation Lengths
#define	IstlThickness	0.0150 // % Radiation Lengths
#define	Ist2Thickness	0.0150 // % Radiation Lengths
#define	SsdThickness	0.0100 // % Radiation Lengths
#define	IFCThickness	0.0052 // % Radiation Lengths
#define	TpcAvgThickness	0.00026 // % Radiation Lengths Average per
#define	VtxRadius	0.0 // cm
#define	BeamPipe1Radius	2.05 // cm (2.05 new 1.50 old)
#define	Hft1Radius	2.50 // cm (2.5 new 1.55 old)
#define	Hft2Radius	7.00 // cm (7.0 new 5.00 old)
#define	BeamPipe2Radius	8.55 // cm (8.55 new 6.05 old)
#define	HpdRadius	9.2 // cm (9.2 HPD,6.0 SVT)
#define	IstlRadius	12.0 // cm (12.0 IST,10.0 SVT, option 9.5 IST)
#define	Ist2Radius	17.0 // cm (17.0 IST,14.0 SVT)
#define	SsdRadius	23.0 // cm
#define	IFCRadius	47.25 // cm Middle-Radius of the IFC its
#define	TpcInnerRadialPitch1	4.8 // cm
#define	TpcInnerRadialPitch8	5.2 // cm
#define	TpcOuterRadialPitch	2.0 // cm
#define	TpcInnerPadWidth	0.285 // cm
#define	TpcOuterPadWidth	0.620 // cm
#define	InnerRowsl	8
#define	InnerRows8	5
#define	InnerRows	(InnerRows1+InnerRows8)
#define	OuterRows	32
#define	TpcRows	(InnerRows1 + InnerRows8 + OuterRows)
#define	RowOneRadius	60.0 // cm