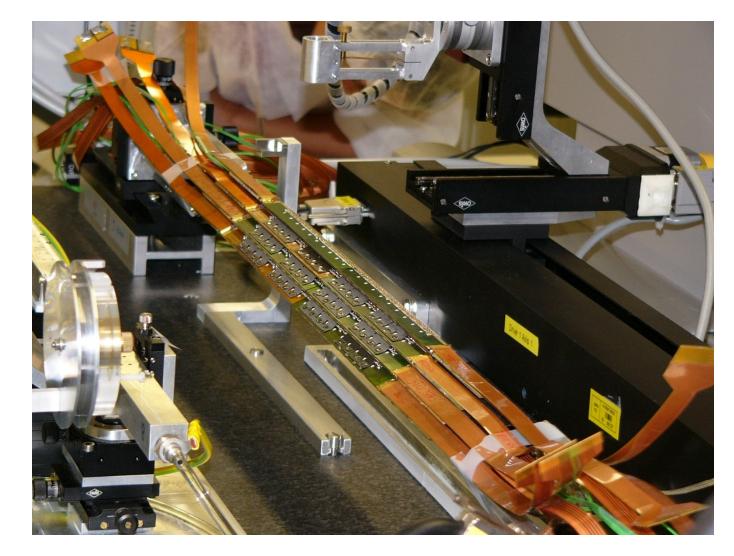


Options for Intermediate Tracking in the HFT

Jim Thomas Lawrence Berkeley National Laboratory


October 4th, 2007

- Alice style Hybrid Pixels
 - 50 x 425 μ m mini-strips
 - 1% thick
- STAR SSD style double sided Si
 - 95 μ m x 4 cm crossed strips
 - with charge sharing to remove ambiguities
 - 1 % thick
- PHOBOS style conventional strips
 - 60 μ m x 4 cm crossed strips
 - 0.75 % thick per layer (1.5% for two)

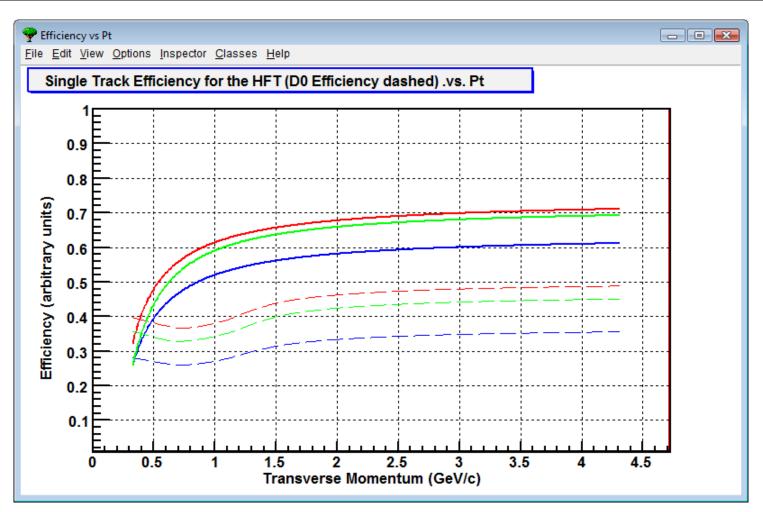
ALICE – Hybrid Pixels ... a well developed technology

Pixel dimensions: $50\mu m (r \phi) \times 425\mu m (z)$

Front-end electronics: CMOS6 0.25µm process on 8" wafers, rad-hard design

Pixel ASIC thickness ≤ 150µm

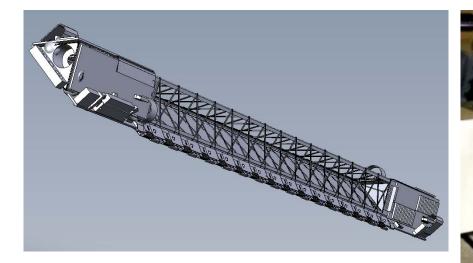
Si sensor ladder thickness $\leq 200 \mu m$


Cooling: water/ $C_6F_{14}/[C_3F_8$ (evaporative)]

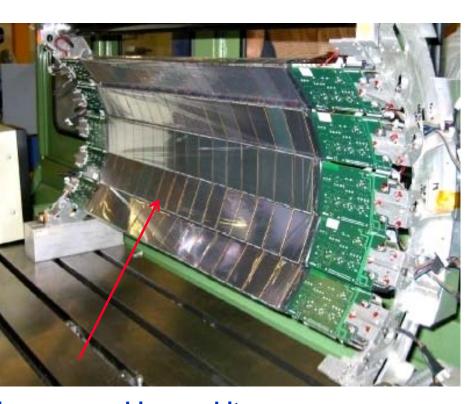
Material budget $\approx 1.0\% X_0$ Si ≈ 0.35 cooling ≈ 0.3 bus ≈ 0.15 support ≈ 0.2

Occupancy < 0.1%

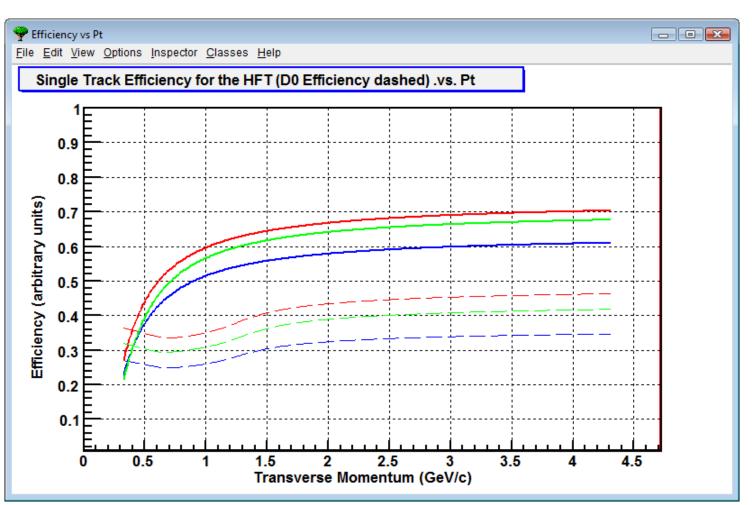
ALICE Hybrid Pixels at 12 cm radius (200 µsec HFT)



- vtx+pxl1+pxl2+ali+ist2+ssd+tpc (blue)
- vtx+pxl1+pxl2+ali+ssd+tpc (red)
- vtx+pxl1+pxl2+ali+tpc (green)

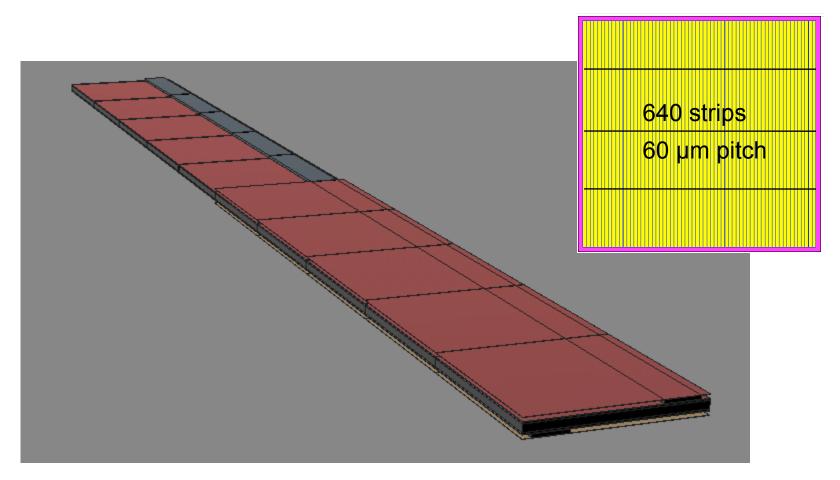

Excellent Redundancy with SSD

SSD Technology – an existing detector in STAR



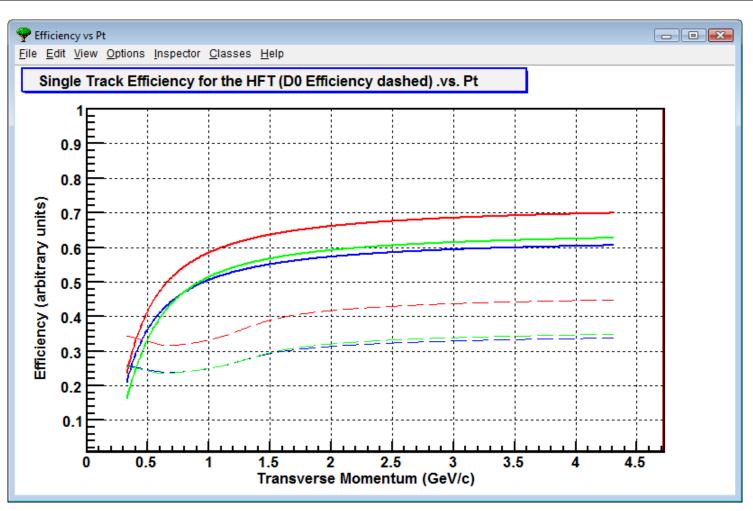
- Technology
 - 30 μm x 750 μm resolution
 - Thin 1% radiation length
 - Crossed strips with charge sharing ... no ambiguous hits
- DAQ rate currently limited to 200 Hz
- Upgrade is possible ala ALICE Si Strip Detector

SSD technology at 12 cm radius (200 µsec HFT)



- vtx+pxl1+pxl2+ssd'+ist2+ssd+tpc (blue)
- vtx+pxl1+pxl2+ssd'+ssd+tpc (red)
- vtx+pxl1+pxl2+ssd'+tpc (green)

Very Good Redundancy with SSD


STAR

PHOBOS Based Technology – extensive use in PHOBOS

- Technology
 - Strip Dimensions : 60 μ m x 1 cm
 - Thin 0.75% radiation length per layer, only one required
 - Orient for best resolution in R- ϕ direction. No crossed strips.

PHOBOS technology at 12 cm radius (200 µsec HFT)

- vtx+pxl1+pxl2+phb+ist2+ssd+tpc (blue)
- vtx+pxl1+pxl2+phb+ssd+tpc (red)
- vtx+pxl1+pxl2+phb+tpc (green)

Pretty Good Redundancy with SSD

STAR

Comments and Conclusions

- Several technologies are very appealing and are well motivated
- Conventional Strips 60 μm x 1 cm look pretty good
- 1/4 length strips are good. Best binary divisor of 4 cm.
 - 1/2 length strips are not so good
- Radial location can still be optimized between 12 and 17 cm
- Only one layer required
 - Drop IST2-Z ... it never was an efficient layer and never will be
 - Drop IST2-R ϕ ... it can't compete with the SSD
 - Replace old IST1 with one layer of 1 cm long strips at an optimized R
 - Orient to give good resolution in the $R\phi$ direction
- Rumors of heat load problems ... can they be overcome?
 - A challenge for the experts

Backup Slides

Efficiency Calculations in a high hit density environment

The probability of associating the right hit with the right track on the first pass through the reconstruction code is:

P(good association) = 1/(1+S)

where $S = 2\pi \sigma_x \sigma_y \rho$

P(bad association) =
$$(1 - Efficiency) = S/(1 + S)$$

and when S is small

P(bad association) $\approx 2\pi \sigma_x \sigma_y \rho$

 σ_x is the convolution of the detector resolution and the projected track error in the 'x' direction, and ρ is the density of hits.

The largest errors dominates the sum

$$\sigma_{x} = \sqrt{(\sigma_{xp}^{2} + \sigma_{xd}^{2})}$$

- The TPC pointing resolution on the outer surface of the PXL Detector is greater than 1 mm ... but lets calculate what the TPC can do alone
 - Assume the new radial location at 8.0 cm for PXL-2, with 9 μm detector resolution in each pixel layer and a 200 μsec detector

Radius	PointResOn (R-∳)	PointResOn (Z)	Hit Density
8.0 cm	1.4 mm	1.5 mm	6.0
2.5 cm	90 µm	110 μm	61.5

- Notice that the pointing resolution on PXL-1 is very good even though the TPC pointing resolution on PXL-2 is not so good
- The probability of a good hit association on the first pass
 - **56% on PXL2** The purpose of the intermediate tracking layers is to make 56% go up to ~100%
 - 96% on PXL1 All values quoted for mid-rapidity Kaons at 750 MeV/c

This is a surprise: The hard work gets done at 8 cm!

The performance of the TPC acting alone

10

The performance of the TPC acting alone depends on the integration time of the PXL chip P(good association) = 1/(1+S)where $S = 2\pi \sigma_x \sigma_v \rho$ 1 0.9 Single Layer Efficiency 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0

100

Integration Time (µsec)

1000

10000

1


•

The performance of the TPC + SSD

• The performance of the TPC + SSD acting together depends on the integration time of the PXL chip ... and its very good

P(good association) = 1/(1+S) where $S = 2\pi \sigma_x \sigma_y \rho$

The purpose of additional intermediate tracking layers is to make 94% go up to ${\sim}100\%$