TOF single electron v_2 in 200 GeV Au+Au collisions at STAR

Y.F. Zhang^{1,2}, Z.B. Xu³, Z.P. Zhang²

¹Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720

²Dept. of Modern Physics, University of Science and Technology of China, Hefei, Anhui, China 230026 ³Brookhaven National Laboratory, Upton, New York 11973

In heavy ion collisions, the anisotropic flow is strongly sensitive to the partonic rescattering. The elliptic flow parameter v_2 from Fourier expansion of the azimuthal distributions is considered as good probe to extrapolate early pressure and density[1]. The mass dependence of v_2 for identified light hadrons can be well reproduced by a hydrodynamical model in the low p_T region $(p_T < 2 \text{ GeV}/c)$, which indicates that the collective motion evolves in early partonic phase of the collisions[2]. The p_T dependence of v_2 scaled by the number of constituent quarks is observed to be universal. The scaling behavior can be illuminated by a quark coalescence model[3]. For heavy flavor quark, due to its extremely heavy mass, it can acquire flow only when light quarks punch it very frequently in a dense medium. The thermal equilibrium in the bulk matter could be approached through sufficient interactions. Therefore, the measurement of v_2 for heavy quarks is vital to test the light flavor thermalization and partonic density in the early stage of heavy ion collisions.

Charmed meson v_2 can be indirectly measured through single electron v_2 because of their strong angular correlation[4, 5]. The measurement of single electron v_2 from STAR will enhance our understanding of the partonic thermalization in the high dense matter. But it is still a challenge due to the huge photon conversion from the virulent material in the STAR detector.

In this analysis, we try to develop a method to measure single electron v_2 from the data taken with the STAR experiment during the $\sqrt{s_{NN}}=200$ GeV Au+Au run in 2004. A total of 19 million 0-80% minimum bias Au+Au events were used. Inclusive electrons are separated from hadrons with more than 90% purity after applying a cut of their dE/dx (0< $n\sigma_e$ <3) in the Time Projection Chamber (TPC) and a cut of $|1/\beta - 1| < 0.03$ in the Time-of-Flight (TOF) at mid-rapidity $(-0.7 < \eta < 0)$. In the cylinder with beam direction (z axis) and azimuthal plane, the invariant mass of the e^+e^- pair is reconstructed in the r-z plane with an opening angle cut of $(\phi_{e^+e^-} < \pi/10)$ in the azimuthal plane [6]. The photonic electrons are identified from the previous invariant mass subtracted by the combinatorial background in a very low mass region $(M_{e^+e^-} < 15 \text{ MeV}).$

The event plane is reconstructed by the tracks exclude electron candidates $(n\sigma_e < 0 \text{ or } n\sigma_e > 3)$ to remove the auto-correlations. The event plane angle is used as reference to obtain the azimuthal distributions $(dN/d\phi)$. The v_2 can be extracted from $dN/d\phi$ in each p_T bin corrected by the event resolution, which is around 72% from random sub-event method. The inclusive and photonic

FIG. 1: Upper panel: Inclusive electron and photonic electron v_2 . Bottom panel: non-photonic electron v_2 .

electron v_2 are shown in the upper panel of Fig. 1. They are higher than the meson and baryon v_2 shown in lines[5] in the low p_T due to the decay kinematics. The different invariant mass cuts are systematically tried for the photonic electron v_2 . The non-photonic electron v_2 and its propagated error can be derived from the formulae:

$$v_2^{non} = \frac{rv_2^{inc} - v_2^{pho}}{r-1}, \sigma_{v_2^{non}} \simeq \frac{r\sigma_{v_2^{inc}}}{r-1},$$

where r is the yield ratio of inclusive over photonic electron[7]. The statistic error of photonic electron is negligible comparing to that of inclusive electron. The non-photonic electron v_2 is shown in the bottom panel of Fig. 1. The wild error bars are due to the very small r (~1.3-1.5 at 2-3 GeV/c), which is related to the huge photon conversion from the material, and large errors of inclusive electron v_2 limited by the small acceptance of current TOF tray. The coming update for STAR detector will provide us a very good chance to measure nonphotonic electron v_2 precisely. The hydrodynamic model and quark coalescence model for heavy flavors will be tested from this future experiment at STAR.

- [1] H. Sorge, Phys. Rev. Lett. 82, 2048 (1999)
- [2] P. Houvinen *et al.*, Phys. Lett. **B503**, 58 (2001)
- [3] D. Molnar et al., Phys. Rev. Lett. 91, 092301 (2003)
- [4] V. Greco et al., Phys. Lett. **B595**, 202 (2004)
- [5] X. Dong et al., Phys. Lett. **B597**, 328 (2004)
- [6] J. Adams *et al.* (STAR Collaboration), Phys. Rev. C70, 044902 (2004); I. Johnson, Ph.D. thesis, U.C. Davis, 2002.
- [7] Y.F. Zhang, e-print: ArXiv nucl-ex/0607011