Nucleon Spin Physics with Hyperons at STAR

Q.-H.Xu¹, K.L.Kowalik¹, E.P.Sichtermann¹ and the STAR collaboration ¹Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720

The spin physics program at RHIC [1] studies the internal spin structure of the proton with polarized proton-proton collisions at a center-of-mass energy of $\sqrt{s} = 200 \text{ GeV}$ and in future $\sqrt{s} = 500 \text{ GeV}$. The production of weak bosons in polarized proton collisions at $\sqrt{s} = 500 \text{ GeV}$ will allow the STAR experiment to determine the u, \bar{u}, d , and \bar{d} quark polarizations directly and precisely by measuring parity-violating single-spin asymmetries in $u\bar{d} \rightarrow W^+$ and $d\bar{u} \rightarrow W^-$ via their leptonic decay, $W \rightarrow lv$.

We have started to investigate the feasibility of accessing the polarization of the three light quarks at $\sqrt{s} = 200 \text{ GeV}$ via the production of hyperons, in particular the Λ and $\bar{\Lambda}$. Hyperons contain at least one *s* quark and hyperon polarization can often be measured via the angular distribution in their weak 2-particle decay. A phenomenological study in the framework of perturbative QCD for RHIC conditions leads us to expect that the $\bar{\Lambda}$ polarization becomes increasingly sensitive to \bar{s} quark polarization with increasingly large $p_{\rm T}$, more so than to the details of spin transfer in the fragmentation process [2].

The STAR experiment [3] features a large Time Projection Chamber (TPC), which tracks charged particles with pseudorapidities up to $\eta \simeq 1.3$ and has capability to identify particles via measurement of specific energy loss [4]. About 0.3 pb^{-1} of proton collisions at $\sqrt{s} = 200 \text{ GeV}$ were collected during 3week RHIC machine development periods in the years 2003 and 2004. Beam polarizations up to 45% were reached.

The Λ ($\bar{\Lambda}$) was reconstructed via the decay $\Lambda \rightarrow p + \pi^-$ ($\bar{\Lambda} \rightarrow \bar{p} + \pi^+$) with a branching ratio of 64%. Two tracks with opposite curvature were required, as well as a topology that is consistent with the decay. Backgrounds were reduced with additional selections on the specific energy loss of protons and pions in the TPC. After reconstruction and selections $30 \cdot 10^3 \Lambda$ and $27 \cdot 10^3 \bar{\Lambda}$ signals remained. Their mean $|x_F| \simeq 8 \cdot 10^{-3}$ and mean $p_T \simeq 1.5 \,\text{GeV/c}$.

The asymmetry with sensitivity to \bar{s} -quark polarization is the longitudinal spin transfer,

$$D_{LL} \equiv \frac{\sigma^{pp_+ \to \Lambda_+ X} - \sigma^{pp_- \to \Lambda_+ X}}{\sigma^{pp_+ \to \bar{\Lambda}_+ X} + \sigma^{pp_- \to \bar{\Lambda}_+ X}},\tag{1}$$

in which $\sigma^{pp_{+(-)} \to \bar{\Lambda}_+ X}$ is the differential cross section for the inclusive production of polarized $\bar{\Lambda}$'s with one of the proton beams positively (negatively) polarized. It was extracted according to,

$$D_{LL} = \left[\frac{N^+ - RN^-}{N^+ + RN^-}\right] \frac{1}{\alpha P \langle \cos \theta \rangle},$$
 (2)

c where $N^{+(-)}$ denotes the inclusive Λ or $\overline{\Lambda}$ yield for positive

(negative) proton beam helicity, *R* is the ratio of measured luminosities for positive and negative proton beam helicity, $\alpha = +(-)0.642 \pm 0.013$ [5] is the empirical decay parameter

FIG. 1: Preliminary STAR data on the spin transfer D_{LL} in inclusive Λ and $\bar{\Lambda}$ production versus η . Positive η is taken along the direction of the polarized proton beam. The mean $|x_F| \simeq 8 \cdot 10^{-3}$ and mean $p_T \simeq 1.5 \,\text{GeV/c}$. The indicated uncertainties are statistical.

for $\Lambda(\bar{\Lambda})$, *P* is the measured proton beam polarization, and θ is the angle between the $\Lambda(\bar{\Lambda})$ momentum in the laboratory frame and the (anti-)proton momentum in the $\Lambda(\bar{\Lambda})$ rest frame. In this analysis the detector acceptance is canceled.

Figure 1 shows preliminary results for D_{LL} versus η with their statistical uncertainties. The systematic uncertainties are estimated to be ~0.01 and ~20% from the beam polarization measurement. No discernable D_{LL} is found, as expected for the modest event sample and limited $p_{\rm T}$ reach.

STAR has measured the $\Lambda + \bar{\Lambda} p_{T}$ -spectra [6]. The data are well reproduced by next-to-leading order perturbative QCD evaluation [7] for $p_{T} > 2 \text{ GeV/c}$ and a suitable choice for the fragmentation functions. Future high luminosity measurements of D_{LL} for $\bar{\Lambda}$ are thus likely to be interpretable in the perturbative framework, and are expected to be sensitive to \bar{s} -quark polarization in the polarized nucleon.

- [1] G. Bunce et al., Ann. Rev. Nucl. Part. Sci. 50, 525 (2000).
- [2] Q.-H. Xu, Z.-T. Liang, and E. Sichtermann, Phys. Rev. D73, 077503 (2006).
- [3] Special Issue: RHIC and Its Detectors, Nucl. Instrum. Meth. A499 (2003).
- [4] M. Shao et al., Nucl. Instrum. Meth. A558, 419 (2006).
- [5] S. Eidelman et al., Phys. Lett. B592, 1 (2004).
- [6] M. Heinz, for the STAR Collaboration (nucl-ex/0604008).
- [7] B. Jäger et al., Phys. Rev. D67, 054005 (2003).