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Recently we showed [1] that a system H possessing a
Hagedorn-like spectrum,

ρH(m) ≈ exp (m/TH) , (1)

characterized by an entropy of the form

S = εV /TB = m/TB (2)

not only has a unique microcanonical temperature TH

TH = (dS/dE)−1 = TB , (3)
but also imparts this same temperature to any other sys-
tem to which H is coupled. In the language of ther-
modynamics, H is a perfect thermostat with constant
temperature TH.

In Eq. (1), m is the mass of the hadron in question
and TH is the parameter (temperature) controlling the
exponential rise of the mass spectrum [2, 3], and in Eq.
(2), V denotes the bag volume.

Such form of the entropy, defined by Eq. (2), leads to
a bag mass spectrum exp (S) identical to Eq. (1) [4, 5].
This property implies that any surface energy associated
with the bag is negligible.

As we discussed in [1], a perfect thermostat is indif-
ferent to the transfer of any portion of its energy to any
parcel within itself, no matter how small. In other words,
it is at the limit of phase stability and the internal fluc-
tuations of its energy density are maximal. Therefore
it does not matter whether this thermostat is one large
bag or it is fragmented in an arbitrary number of smaller
bags or, equivalently, it is a system of hadrons with a
spectrum given by Eq. (1). This fact has several impor-
tant consequences on the thermodynamic properties of
H.

It was found long ago [6] that the exponential mass
spectrum (1) leads to nonequivalence between the micro-
canonical and (grand)canonical ensembles, but the strik-
ing consequences of this fact along with the source of the
trouble were never thoroughly analyzed until recently.
This led to multiple confusions and erroneous conclu-
sions based on results obtained by canonical and grand
canonical treatments of the Hagedorn mass spectrum (1).
Here we briefly discuss the source of trouble on a well-
known example which has nothing to do with hadronic
resonances and can be easily tested in every kitchen.

The insertion of an exponential mass spectrum (1) in
the canonical partition function

Z (T ) =

∞∫
0

ρH (E) e−
E
T dE (4)

led to the incorrect conclusion that the entire range of
temperatures 0 ≤ T < TH is accessible with TH as the
limiting temperature of the system.

In order to see the origin of this erroneous conclusion,
let us consider the following illuminating example. Con-
sider a system A composed of ice and water at standard
pressure. For such a system the coexistence temperature
(in Kelvin) is TA = 273 K. Because of coexistence, we
can input or extract heat to/from the system without
changing TA. The system A is a thermostat.

If a quantity Q = E−E0 of heat is added to the system
with the initial energy E0, the change in entropy is

∆S = Q/TA. (5)

The level density of A is then

ρ(Q) = eS0 eQ/TA = K eE/TA . (6)

The level density, or spectrum, is exponential in E and
depends only on the intrinsic “parameter” TA. The par-
tition function of A is:

Z(T ) =

∞∫
0

K eE/TAe−E/T dE

=

∞∫
0

K e
−
(

1
T −

1
TA

)
E

dE = K
TAT

TA − T
. (7)

This seems to indicate that A can assume any tempera-
ture below TA, which at first sight looks like the limiting
value for the temperature. However, by original assump-
tion, the only temperature possible for A is TA.

Using this simple example we demonstrated that the
microcanonical system with the exponential density of
states (6) with a single value of temperature TA generates
the canonical partition function (7) which has no physical
sense for any value of parameter T 6= TA, and diverges at
the true temperature TA of the microcanonical system.
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