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The standard bag model [1] expresses the “energy” of
the bag as

εV = H ≡ (σT 4 + B)V , σ =
π2
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where σT 4 is the energy density of translational motion
of free massless quarks and gluons in the bag, σ = π2
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is the Stefan-Boltzmann constant counting the degrees of
freedom of gluons gg (spin, color) and (anti-)quarks gqq̄

(spin, color and u, d, s-flavor), respectively, and B is the
bag constant. The corresponding pressure is

p =
σ

3
T 4 −B . (2)

The equilibrium condition, p = 0, leads to a bag temper-
ature

TB =
[
3B

σ

] 1
4

. (3)

Pictorially, the bag constant represents the pressure ex-
erted by the hadronic vacuum on the partonic vacuum.
In so far as B is a constant, TB is a constant, irrespective
of the bag size. Thus, the entropy can be written as

S =
∫

dH

TB
=

H

TB
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TB
, (4)

where m is the bag mass. The degeneracy of the bag, ρ,
is then

ρ(m) ∼ eS = e
m
TB . (5)

This extraordinary result (Hagedorn spectrum [2]), leads
to the conclusion that any system coupled to a bag must
be at temperature TB . No other temperature is admissi-
ble. The consequences of this entropy form on the equi-
librium of bags with other particles or among themselves
has been described elsewhere [3, 4].

The bag expressions reported above contain only vol-
ume terms. Given the finite size of the bags that are
interpreted as resonances, it may be of interest to con-
sider finite size effects and their role in the description of
the bags properties. The simplest generalization, assum-
ing that the bags are leptodermous (which is supported
by the short range of hadron-hadron interaction and by
the saturating properties implicit in Eq. (1)) is that of
introducing a surface energy.

Thus, the pressure of a spherical bag can be written as

p =
σ

3
T 4 −B − as(T )V −

1
3 =

σ
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, (6)

where as(T ) is the temperature dependent surface energy

coefficient, R is the bag radius and α ≡
[
4π
3

] 1
3 . Using

the thermodynamic identities for the free energy F and
entropy S
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, (7)

one can find all thermodynamic functions as follows
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In evaluating the expression (8) we fixed the integration
constant (an arbitrary function of T ) to zero because for
the bag of zero volume the free energy should vanish.

While theoretical input on the magnitude of as(T ) > 0
is needed the consequences of this surface term are sur-
prising. In Eq. (6) the surface term appears as an
additional pressure to the bag pressure. Therefore, set-
ting the total pressure to zero p = 0, we obtain for the
bag temperature

T = T (R) =
[

3
σ

(
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)] 1
4

. (11)

When R is large we recover the previous bag temperature
and the associated physics. When R becomes small, how-
ever, the bag temperature increases! The implications of
his dependence are strange indeed. The first is the pe-
culiar behavior of the bag’s heat capacity. The second
is the stability of the gas of bags (or lack thereof). The
third is the signature of a bag’s decay.
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