Exploring nuclear shape and structure of neutron-rich Tc isotopes

Y.X. Luo^{1,2}, J.H. Hamilton¹, J.O. Rasmussen², A. V. Ramayya¹, A. Gelberg³, I. Stefanescu³, J.K.Hwang¹, S.J. Zhu¹, X.L. Che¹, P.M. Gore¹, D. Fong¹, E.F. Jones¹, S.C. Wu², I.Y. Lee², T.N. Ginter², W. C. Ma¹, G.M. Ter-Akopian¹, A.V. Daniel¹,

M.A. Stoyer² and R. Donangelo²

¹ Department of Physics, Vanderbilt University, Nashville, TN 37235, USA

² Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720

³ Inst. für Kernphysik, Universität zu Köln, 50937 Köln, Germany

The studies of shape coexistence and shape transitions in the neutron-rich A ~ 100 region have long been of major interest [1, 2]. Our systematic studies in Y-Nb-Tc-Rh (Z=39-41-43-45) neutron-rich isotopes have revealed a shape transition from an axially symmetric shape with large quadrupole deformation in Y isotopes to large triaxial deformations in Tc and Rh isotopes [3-5]. However, the most neutron-rich isotopes reached in this nuclear region before now are ¹⁰⁹Tc (N=66) and ¹¹³Rh (N=68). It is of interest to explore further their shape and structure along isotopic chains to the region of heavier isotopes.

FIG. 1: High-spin level scheme of ¹¹⁰Tc in the present work.

In the present work the high-spin level scheme of N=67 neutron-rich ¹¹⁰Tc (N=67) is established for the first time (Fig. 1), and that of ¹¹¹Tc (N=68) is extended and expanded (Fig. 2) based on the measurements of prompt γ rays from the spontaneous fission of ²⁵²Cf at the Gammasphere [6].

FIG. 2: The $\alpha = -1/2$ member and the band-crossing of the ground band of ¹¹¹Tc are observed in the present work.

The ground band of ¹¹¹Tc reaches the band-crossing region and the new observation of the weakly populated $\alpha = -1/2$ member of the band provides important information of signature splitting. The systematics of band-crossings in the isotopic and isotonic chains and a CSM calculation suggest that the band-crossing of the ground band of ¹¹¹Tc is due to alignment of a pair of $h_{11/2}$ neutrons. The best fit to signature splitting, branching ratios and excitations of the ground band of ¹¹¹Tc by RTRP model calculations result in a shape of ε_2 = 0.32 and $\gamma = -26^{\circ}$ for this nucleus. Its triaxiality is larger than that of ^{107, 109}Tc, which indicates increasing triaxiality in Tc isotopes with increasing neutron number (see Fig. 3). The identification of the weakly populated 'K+2 satellite' band provides strong evidence for the large triaxiality of ¹¹¹Tc. In ¹¹⁰Tc, the four lowest-lying levels observed are very similar to those in ¹⁰⁸Tc [7]. At an excitation of 478.9 keV above the lowest state observed, ten states of a $\Delta I=1$ band are observed. This band of ¹¹⁰Tc is very analogous to the $\Delta I=1$ bands in ^{106,108}Tc [7] but it has greater and reverses the sign of signature splitting at higher spins.

FIG. 3: Experimental signature splittings of the ground bands of ¹⁰⁵⁻¹¹¹Tc, data taken from our papers [4, 6]. The increasing signature splittings are interpreted by the RTRP model calculations as increasing triaxiality with increasing neutron number of the Tc isotopes.

REFERENCES

- [1] J. Skalski et al., Nucl. Phys. A617, 282(1997).
- [2] J.H. Hamilton, Treatise on Heavy Ion Science, Vol. 8, D. Allan Bromley Ed., (Plenum Press, New York 1989) 2.
- [3] Y.X. Luo et al., Phys. Rev. C69, 024315(2004).
- [4] Y.X. Luo et al., Phys. Rev. C70, 044310(2004).
- [5] Y.X. Luo et al., J. Phys. G, Nucl. Part. Phys. 31, 1303(2005)
- [6] Y.X. Luo et al., Phys. Rev. C, in press.
- [7] S.J. Zhu et al., in preparation for publication