Study of low-lying resonance states in ${ }^{16} \mathrm{~F}$ using an ${ }^{15} \mathrm{O}$ radioactive ion beam
D. W. Lee ${ }^{1,3}$, K. Perajarvi ${ }^{1}$, J. Powell ${ }^{2}$, J. P. O'Neil ${ }^{2}$, D. M. Moltz ${ }^{4}$, and J. Cerny ${ }^{1,4}$
${ }^{1}$ Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
${ }^{2}$ Life Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
${ }^{3}$ Department of Nuclear Engineering, University of California, Berkeley, California 94720
${ }^{4}$ Department of Chemistry, University of California, Berkeley, California 94720

Among the $\mathrm{A}=16, \mathrm{~T}=1$ isobaric triad, many states in ${ }^{16} \mathrm{O}$ and ${ }^{16} \mathrm{~N}$ have been well established, but less has been reported about ${ }^{16} \mathrm{~F}$. Four states of ${ }^{16} \mathrm{~F}$ below 1 MeV have been identified experimentally, and their energies are currently known to an accuracy of 4-6 keV [1] (the next known state of ${ }^{16} \mathrm{~F}$ lies at 3.76 MeV). Experimental studies with stable beams have established spin-parity values for theses lowlying states, but only upper limits or rough estimates of their level widths have been reported. The main difficulty in studying ${ }^{16} \mathrm{~F}$ is that it can be reached by relatively few reactions, such as ${ }^{14} \mathrm{~N}\left({ }^{3} \mathrm{He}, \mathrm{n}\right)[2],{ }^{19} \mathrm{~F}\left({ }^{3} \mathrm{He},{ }^{6} \mathrm{He}\right)[3],{ }^{16} \mathrm{O}\left({ }^{3} \mathrm{He}, \mathrm{t}\right)$ [3,4], and ${ }^{16} \mathrm{O}(\mathrm{p}, \mathrm{n})[5]$.
All the states in ${ }^{16} \mathrm{~F}$ are unbound to ${ }^{15} \mathrm{O}+\mathrm{p}$. The spins and parities of the low-lying states have been found to be $0^{-}, 1^{-}, 2^{-}$, and 3^{-}in ascending order in energy, and are believed to have ${ }^{15} \mathrm{O}$ core-single proton configurations such as $1 \mathrm{p}_{1 / 2}{ }^{-1}$ $2 \mathrm{~s}_{1 / 2}$ for the $0^{-}, 1^{-}$, and $1 \mathrm{p}_{1 / 2}^{-1} 1 \mathrm{~d}_{5 / 2}$ for the $2^{-}, 3^{-}$. However, the variation in the $1 \mathrm{~d}_{5 / 2}-2 \mathrm{~s}_{1 / 2}$ energy level difference across the members of the $A=16, T=1$ isobaric triad made initial ${ }^{16} \mathrm{~F}$ spin assignments uncertain, since ${ }^{16} \mathrm{~N}$ showed $\mathrm{J}^{\pi}=2^{-}, 0^{-}, 3^{-}$, 1^{-}for the four levels in ascending order while $\mathrm{J}^{\pi}=0^{-}, 2^{-}, 1^{-}, 3^{-}$ arose in ${ }^{16} \mathrm{O}$.

A recently developed ${ }^{15} \mathrm{O}\left(\mathrm{T}_{1 / 2}=122 \mathrm{sec}.\right)$ radioactive ion beam from the BEARS (Berkeley Experiments with Accelerated Radioactive Species) facility was used to study the structure of ${ }^{16} \mathrm{~F}$ using ${ }^{15} \mathrm{O}+\mathrm{p}$ elastic scattering and the Thick Target Inverse Kinematics (TTIK) method on a polyethylene target. The process developed for the ${ }^{14} \mathrm{O}$ beam [6] was used for ${ }^{15} \mathrm{O}$ production, but the gas target was loaded with ${ }^{15} \mathrm{~N}_{2}$ instead of ${ }^{14} \mathrm{~N}_{2}$. In addition, the unloaded ${ }^{15} \mathrm{~N}_{2}$ gas was stored and re-injected into the target cell using a recycling mechanism [7]. In this experiment, the average beam intensity of ${ }^{15} \mathrm{O}$ on target was about $4.5 \times 10^{4} \mathrm{pps}$, and the beam energy spread was about 1.7 MeV FWHM.
The setup was similar to that given in Ref. [8], but was in Cave- 0 rather than Cave-4A. The $120 \mathrm{MeV}{ }^{15} \mathrm{O}$ beam was slowed down by a $3.81 \mu \mathrm{~m} \mathrm{Ni}$ degrader, and completely stopped in a thick $200 \mu \mathrm{~m}\left(18.4 \mathrm{mg} / \mathrm{cm}^{2}\right) \mathrm{CH}_{2}$ target. The main particle telescope was composed of $30 \mu \mathrm{~m}, 700 \mu \mathrm{~m}$, and $5,000 \mu \mathrm{~m}$ thick silicon detectors, located at a distance of 10.9 cm from the target at 0°. The first two detectors were thick enough to detect protons from the four low-lying resonance states in ${ }^{16} \mathrm{~F}$, and the third one permitted the detection of higher energy protons up to 7 MeV in the center-of-mass (c.m.). The total energy resolution was estimated to be 28 keV FWHM in the c.m., including contributions from electronic noise, detector/setup geometry, and beam straggling in the CH_{2} target.
Figure 1 presents the results from 0.4 to 3 MeV in the $\mathrm{c} . \mathrm{m}$. The energy calibration for the system was done by using ${ }^{15} \mathrm{~N}(\mathrm{p}, \mathrm{p})$ reactions before and after the main ${ }^{15} \mathrm{O}(\mathrm{p}, \mathrm{p})$ meas-
urement, since the energy levels of the relevant excited states in ${ }^{16} \mathrm{O}$ are well known. The uncertainty in the energy calibration was estimated to be about $\pm 15 \mathrm{keV}$ in the $\mathrm{c} . \mathrm{m}$. frame. In this study, the earlier ${ }^{12} \mathrm{C}\left({ }^{14} \mathrm{O}, \mathrm{p}\right)$ reaction data [8] were adopted to estimate the proton background - a very broad distribution for the background proton spectrum. This proton background appears to be small in the region of the sharp proton peaks from the four low-lying resonances.

Our data analysis focused on determining the level widths of the first four states in ${ }^{16} \mathrm{~F}$ so that only the low energy region below 3 MeV in the c.m. was used for an R-matrix analysis. The results of this analysis are shown in Fig. 1 as well as the fitted background function. Some of the preliminary level widths that have been obtained differ from compiled values from the previous studies. The level widths of the 0^{-}, and 1^{-}states were reported to be $40 \pm 20 \mathrm{keV}$, and less than 40 keV , respectively in Ref. [1]. Our results suggest that the 0^{-}state has a level width of $23.3 \pm 1.6 \mathrm{keV}$, and that the broader 1^{-}state has a width of $87.6 \pm 2.4 \mathrm{keV}$ (about twice the compiled value). Interestingly, similar results of ~ 25 keV and $\sim 100 \mathrm{keV}$ were reported for the 0^{-}and 1^{-}state, respectively, in Ref. [4], which is consistent with this work. The level width of the 2^{-}state is found to be $3.4 \pm 0.6 \mathrm{keV}$ which is much narrower than the compiled value of 40 ± 30 keV , while $13.9 \pm 1.5 \mathrm{keV}$ for the 3^{-}state is in good agreement with $<15 \mathrm{keV}$ given in Ref. [1].

FIG. 1: (Color online) The center-of-mass excitation function for ${ }^{15} \mathrm{O}+\mathrm{p}$ elastic scattering. The solid line presents the R-matrix fit, with the background function shown by the dashed line.

REFERENCES

[1] D. R. Tilley et. al., Nucl. Phys. A564, 1 (1993).
[2] C. D. Zafiratos et. al., Phys. Rev. 137, B1479 (1965).
[3] H. Nann et. al., Phys. Rev. C 16, 1684 (1977).
[4] W. A. Sterrenburg et. al., Nucl. Phys. A420, 257 (1984).
[5] A. Fazely et. al., Phys. Rev. C 25, 1760 (1982).
[6] J. Powell et. al., Nucl. Instrum. Methods Phys. Res. B 204, 440 (2003).
[7] J. Powell and J. P. O'Neil, Appl. Radiat. Isot. 64, 755 (2006).
[8] F. Q. Guo et. al., Phys. Rev. C 72, 034312 (2005).

