Study of low-lying resonance states in ¹⁶F using an ¹⁵O radioactive ion beam

D. W. Lee^{1, 3}, K. Perajarvi¹, J. Powell², J. P. O'Neil², D. M. Moltz⁴, and J. Cerny^{1, 4}

¹Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720

² Life Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720

³ Department of Nuclear Engineering, University of California, Berkeley, California 94720

⁴ Department of Chemistry, University of California, Berkeley, California 94720

Among the A=16, T=1 isobaric triad, many states in ¹⁶O and ¹⁶N have been well established, but less has been reported about ¹⁶F. Four states of ¹⁶F below 1 MeV have been identified experimentally, and their energies are currently known to an accuracy of 4-6 keV [1] (the next known state of ¹⁶F lies at 3.76 MeV). Experimental studies with stable beams have established spin-parity values for theses low-lying states, but only upper limits or rough estimates of their level widths have been reported. The main difficulty in studying ¹⁶F is that it can be reached by relatively few reactions, such as ¹⁴N(³He,n) [2], ¹⁹F(³He, ⁶He) [3], ¹⁶O(³He,t) [3,4], and ¹⁶O(p,n) [5].

All the states in ¹⁶F are unbound to ¹⁵O+p. The spins and parities of the low-lying states have been found to be 0°, 1°, 2°, and 3° in ascending order in energy, and are believed to have ¹⁵O core-single proton configurations such as $1p_{1/2}^{-1} 2s_{1/2}$ for the 0°, 1°, and $1p_{1/2}^{-1} 1d_{5/2}$ for the 2°, 3°. However, the variation in the $1d_{5/2}$ -2s_{1/2} energy level difference across the members of the A=16, T=1 isobaric triad made initial ¹⁶F spin assignments uncertain, since ¹⁶N showed J^{π} = 0°, 2°, 1°, 3° arose in ¹⁶O.

A recently developed ¹⁵O ($T_{1/2} = 122$ sec.) radioactive ion beam from the BEARS (Berkeley Experiments with Accelerated Radioactive Species) facility was used to study the structure of ¹⁶F using ¹⁵O+p elastic scattering and the Thick Target Inverse Kinematics (TTIK) method on a polyethylene target. The process developed for the ¹⁴O beam [6] was used for ¹⁵O production, but the gas target was loaded with ¹⁵N₂ instead of ¹⁴N₂. In addition, the unloaded ¹⁵N₂ gas was stored and re-injected into the target cell using a recycling mechanism [7]. In this experiment, the average beam intensity of ¹⁵O on target was about 4.5×10^4 pps, and the beam energy spread was about 1.7 MeV FWHM.

The setup was similar to that given in Ref. [8], but was in Cave-0 rather than Cave-4A. The 120 MeV ¹⁵O beam was slowed down by a 3.81 μ m Ni degrader, and completely stopped in a thick 200 μ m (18.4 mg/cm²) CH₂ target. The main particle telescope was composed of 30 μ m, 700 μ m, and 5,000 μ m thick silicon detectors, located at a distance of 10.9 cm from the target at 0°. The first two detectors were thick enough to detect protons from the four low-lying resonance states in ¹⁶F, and the third one permitted the detection of higher energy protons up to 7 MeV in the center-of-mass (c.m.). The total energy resolution was estimated to be 28 keV FWHM in the c.m., including contributions from electronic noise, detector/setup geometry, and beam straggling in the CH₂ target.

Figure 1 presents the results from 0.4 to 3 MeV in the c.m. The energy calibration for the system was done by using ${}^{15}N(p,p)$ reactions before and after the main ${}^{15}O(p,p)$ meas-

urement, since the energy levels of the relevant excited states in ¹⁶O are well known. The uncertainty in the energy calibration was estimated to be about ± 15 keV in the c.m. frame. In this study, the earlier ¹²C(¹⁴O,p) reaction data [8] were adopted to estimate the proton background - a very broad distribution for the background proton spectrum. This proton background appears to be small in the region of the sharp proton peaks from the four low-lying resonances.

Our data analysis focused on determining the level widths of the first four states in ¹⁶F so that only the low energy region below 3 MeV in the c.m. was used for an R-matrix analysis. The results of this analysis are shown in Fig. 1 as well as the fitted background function. Some of the preliminary level widths that have been obtained differ from compiled values from the previous studies. The level widths of the 0[°], and 1[°] states were reported to be 40 ± 20 keV, and less than 40 keV, respectively in Ref. [1]. Our results suggest that the 0[°] state has a level width of 23.3 ± 1.6 keV, and that the broader 1⁻ state has a width of 87.6 ± 2.4 keV (about twice the compiled value). Interestingly, similar results of ~ 25 keV and ~ 100 keV were reported for the 0⁻ and 1⁻ state, respectively, in Ref. [4], which is consistent with this work. The level width of the 2⁻ state is found to be 3.4 ± 0.6 keV which is much narrower than the compiled value of 40 ± 30 keV, while 13.9 ± 1.5 keV for the 3⁻ state is in good agreement with < 15 keV given in Ref. [1].

FIG. 1: (Color online) The center-of-mass excitation function for ¹⁵O+p elastic scattering. The solid line presents the R-matrix fit, with the background function shown by the dashed line.

REFERENCES

- [1] D. R. Tilley et. al., Nucl. Phys. A564, 1 (1993).
- [2] C. D. Zafiratos et. al., Phys. Rev. 137, B1479 (1965).
- [3] H. Nann et. al., Phys. Rev. C 16, 1684 (1977).
- [4] W. A. Sterrenburg et. al., Nucl. Phys. A420, 257 (1984).
- [5] A. Fazely et. al., Phys. Rev. C 25, 1760 (1982).
- [6] J. Powell et. al., Nucl. Instrum. Methods Phys. Res. B 204, 440 (2003).
- [7] J. Powell and J. P. O'Neil, Appl. Radiat. Isot. 64, 755 (2006).
- [8] F. Q. Guo et. al., Phys. Rev. C 72, 034312 (2005).