Thermal Neutron Capture Cross Sections of the Palladium Isotopes*

R.B. Firestone¹, M. Krticka², D.P. McNabb³, B.W. Sleaford³, U. Agvaanluvsan³, T. Belgya⁴, and Zs. Révay⁴

¹ Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720

² Charles University in Prague, Faculty of Mathematics and Physics, V Holešovickách 2, CZ-180 00 Prague 8, Czech Republic

³ Lawrence Livermore National Laboratory, Livermore, California 94551 ⁴ Institute of Isotope and Surface Chemistry, H-1525, Budapest, Hungary

We have measured precise thermal neutron capture γ -ray cross-sections σ_{γ} for all stable Palladium isotopes with the guided thermal neutron beam from the Budapest Reactor. The data were compared with other data from the literature and have been evaluated into the Evaluated Gamma-ray Activation File (EGAF)[1]. Total radiative neutron capture cross-sections σ_{v} can be deduced from the sum of transition cross sections feeding the ground state of each isotope if the decay scheme is complete. The Palladium isotope decay schemes are incomplete, although transitions de-exciting low-lying levels are known for each isotope. We have performed Monte Carlo simulations of the Palladium thermal neutron capture de-excitation schemes using the computer code DICEBOX [2]. This program generates level schemes where levels below a critical energy E_{crit} are taken from experiment, and those above Ecrit are calculated by a random discretization of an a priori known level density formula $\rho(E, J^{\pi})$. Level de-excitation branching intensities are taken from experiment for levels below E_{crit} and the capture state,

Га	ble	1.	Palladium	thermal	neutron	cross	sections
----	-----	----	-----------	---------	---------	-------	----------

	Thermal (n,g) Cross Sections			
Isotope	This work	Literature [3]		
102 Pd	0.9±0.3 b	1.82±0.20 [4]		
104 Pd	0.61±0.11	0.6±0.3		
¹⁰⁵ Pd	21.1±1.5	21.0±1.5		
¹⁰⁶ Pd	0.36±0.05	0.29±0.03		
¹⁰⁷ Pd	7.5±0.6	7.6±0.4		
108m Pd(189 keV)	0.185±0.011	0.18±0.03		
¹¹⁰ Pd	0.10±0.03	0.19±0.03		

or calculated for levels above E_{crit} assuming an a priori photon strength function and applying allowed selection rules and a Porter-Thomas distribution of widths. The advantage of this method is that calculational uncertainties can be investigated systematically. Calculated feeding to levels below E_{crit} can then be normalized to the measured cross section deexciting those levels to determine the total radiative neutron cross-section σ_{γ} In this paper we report the cross section measurements in Table 1. We have also determined from our statistical calculations that the neutron capture states in ¹⁰⁷Pd are best described as $2^{+}[59(4)\%] + 3^{+}[41(4)\%]$. Agreement with literature values was excellent in most cases. We found significant discrepancies between our results for ¹⁰²Pd and ¹¹⁰Pd and earlier values that could be resolved by re-evaluation of the earlier results.

* Paper presented at the Capture Gamma-ray Spectroscopy and Related Topics 12th International Symposium, Notre Dame, Indiana, September 4-9, 2005.

REFERENCES

[1] R.B. Firestone, H.D. Choi, R.M. Lindstrom, G.L. Molnár, S.F. Mughabghab, R. Paviotti-Corcuera, Zs. Révay, V. Zerkin. and C.M. Zhou, Database of Prompt GammaRavs from Slow Neutron Capture for Elemental Analysis, International Atomic Energy Agency TECDOC, in press (2006). [2] F. Becvár, Nucl. Instr. Meth. A417, 434 (1998). 105, 113 (2000).

[3] S.F. Mughabghab, Thermal Neutron Capture CrossSections, Resonance Integrals, and g-factors, INDC(NDS)-440 (2003).

[4] C.L. Duncan and K.S. Krane, Phys. Rev. C71, 054322 (2005).