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FIG. 1: Simulated zenith dependence of the flux for both
down-going cosmic muons and neutrino induced muons as ex-
pected at SNO. The effect of various oscillation scenarios is
visible below the horizon.

Although it serves primarily as a solar neutrino ex-
periment, the Sudbury Neutrino Observatory can also
observe atmospheric neutrinos. SNQO’s location under a
flat overburden will allow a measurement of the abso-
lute atmospheric neutrino flux by observing the rate of
neutrino-induced muons above and below the horizon.
While the neutrino flux is symmetric about the horizon,
only events coming from below the horizon have a signifi-
cant probability of having oscillated as illustrated on Fig-
ure 1. SNO’s measurement allows an independent check
of the atmospheric neutrino oscillation parameters.

Located in Sudbury, ON, Canada, SNO is the deepest
underground laboratory currently in operation. Having
a depth of 2092 m (or 6 km water equivalent) reduces the
number of cosmic ray activity seen within the detector
to ~70 events/day. The low cosmic ray activity allows
SNO to be highly sensitive to solar neutrinos, high-energy
cosmic rays and neutrino-induced muons.

The principal analysis topics currently being pursued
are:

e Determination of the atmospheric neutrino flux
above the horizon

e Measurement of atmospheric neutrino oscillations

e Precision measurement of the cosmic ray flux at
6010 mwe depth

e Precision measurement of the neutron produc-
tion/spallation rates from cosmic ray muons

The analysis is based on a 800-days data set and uses
both the heavy and light water volumes in SNO as tar-
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FIG. 2: Projected sensitivity contours for a v, — v, oscillation
at SNO with (Am? sin?20) = (2.5 x 1073,1) compared to
current measurements by other collaborations. The curves
represent confidence levels of 68% and 90% for stopping and
trough-going muons combined. Statistical study only.

get for a total of approximately 2.7 ktonnes. Two types
of events are used separately to best constrain the os-
cillation parameters space. Muons traversing the detec-
tor provide a broad scan of the high energy part of the
neutrino spectrum. There is a roughly equal number of
muons stopping inside the detector with energies up to
3-4 GeV.

Signal extraction techniques are based on a maxi-
mum likelihood analysis with both simultaneous fit to
systematic parameters and with fixed systematic er-
rors. Figure 2 shows SNO’s projected fits on the os-
cillation parameters where the sensitivity combines both
the through-going and stopping muons. Also shown are
the results of the latest measurements by the Super-
Kamiokande and K2K collaborations [1],[2],[3], and in
particular the newly released result by the MINOS col-
laboration [4]. Despite SNO’s modest size compared to
other Cherenkov detectors, the perspective of perform-
ing virtually model-independent measurements on atmo-
spheric neutrinos makes it particularly competitive.

Blindness constraints on our dataset are expected to
be lifted later this year in view of the final phase of the
analysis.
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