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The theoretical determination of baryon resonances from
the fundamental quark and gluon degrees of freedom is an
important goal. Lattice QCD is the theoretical method suited
to solving this problem. It has provided a reasonably good re-
production of experimental ground state energies for different
baryons. However, only a few results for excited state energies
have been reported. A complication is that the spectrum of ex-
cited states on the lattice contains discrete scattering states that
couple strongly to the baryon resonances. In the paper [1], we
extract the baryon spectrum of isospin 1/2 and 3/2 from the
Monte Carlo simulations of lattice QCD.

Special technique employed in this work is the use of im-
proved baryon interpolating fields. Theoretical developments
of lattice interpolators is detailed in Ref. [2, 3]. Improved
baryon three-quark operators include covariant displacements
between quarks to incorporate explicit inter-quark interac-
tions. Such construction is needed in order to gain nonzero
orbital angular momenta at source and sink. In these simula-
tions, array of operators are used in each symmetry channel to
compute matrices of two-point correlation functions.

Due to the discretization of space, continuum rotational
group is broken down to finite point group called the octa-
hedral group. Because the octahedral group contains a finite
number of irreducible representations, mapping of spins from
energy eigenstates obtained in lattice simulations is difficult
even if continuum extrapolation is performed. The only way
to identify continuum spin of hadron is to analyze the degen-
eracy patterns of mass eigenstates over all irreducible repre-
sentations. The subduction of continuum spins to irreducible
representations of the octahedral group is given in Table I.In
part, the identification of baryon spin is possible in the pre-
liminary results of the recent work [1]. However, distinction
of higher spins such as 7/2 is still uncertain.

TABLE I: Spinorial irreducible representations of the octahedral
group. Dimensions of irreducible representations are listed in the
middle column. Spins and parities of continuum irreduciblerepre-
sentations of SU(2) that have subductions to each irrep of the octa-
hedral group are listed in the right column.
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Figure 1 shows the quenched QCD results of lowest-lying
energies that we obtained from the best sets of operators in
various spin-parity channel. Pion mass we used is≃ 500MeV.
Under this unrealistic conditions, the masses of baryons be-
come heavier than experimental values. Nevertheless, thepat-
tern of mass ordering in a given parity by lattice simulations
surprizingly agrees with empirical data. In particular, the mass
pattern of negative parity states are well explained by the spin-
flavor SU(6) quark model with spin-spin contact interaction
symmetry breaking term, which makes 1/2− and 3/2− less
massive than the unperturbed level. In the future calculations
have to be performed with lighter pions so as to extrapolate the
spectrum in the chiral limit. Study of decay of heavy particles
will be essential. The finite volume analysis on energy lev-
els and spectral densities enables us to identify single-particle
state or scattering states.
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FIG. 1: The lowest energies obtained for each symmetry channel of
isospin1

2 and 3
2 baryons
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