
12/06/2010 1/13IPHC - DRS – CMOS Sensors group - Gilles CLAUS

Ultimate / Test data link - Normal readout = Not test modes
Strasbourg November 2010

OUTLINE
Ultimate Steering & Readout

Why & How to test data transmission ?

Test with header, trailer & frame counter

Test by emulating hits on matrix

Conclusion

12/06/2010 2/13Ultimate / Test data link, Strasbourg November 2010 IPHC - DRS – CMOS Sensors group - Gilles CLAUS

Steering & Readout : Ultimate ?

Ultimate ?

Matrix of 890 880 pixels : 960 columns x 928 lines – 19,872 mm x 19,210 mm – 20,7 µm pitch – 185,6 µs integration time

Normal digital data stream after Zero Suppression (ZS)

Steering

Configuration (operating modes, bias etc …) by JTAG slow control

Main clock 160 MHz
On board oscillator (single Mimosa 26 setup)

Provided by external oscillator (Telescope or ladder setup)

Start command
By JTAG slow control (single Ultimate setup)

By external HW signal (Telescope or ladder setup)

Readout

Normal ZS output - Full memory size  2 Outputs at 160 MHz

20240 µm

22
71

0
µm

32
80

µm

12/06/2010 3/13Ultimate / Test data link, Strasbourg November 2010 IPHC - DRS – CMOS Sensors group - Gilles CLAUS

Readout
• CLKD 160 MHz
• Synchro MK_D
• Data out  D0, D1

Steering & Readout : Signals ?

JTAG
Steering
• CLKL 160 MHz
• Start

12/06/2010 4/13Ultimate / Test data link, Strasbourg November 2010 IPHC - DRS – CMOS Sensors group - Gilles CLAUS

Steering & Readout : Synchronization & Bitstream

Readout configuration N° 3 : 2 outputs @ 160 MHz

Summary

Data generated on rising edge of Ultimate output clock

Synchronization signal MKD – Duration 4 clocks cycles

Data LSB first

First bit of frame = Header LSB

12/06/2010 5/13Ultimate / Test data link, Strasbourg November 2010 IPHC - DRS – CMOS Sensors group - Gilles CLAUS

Steering & Readout : Data Stream

Readout configuration N° 3 : 2 outputs @ 160 MHz
Provides the whole states memory size : 1850 W16 (word of 16 bits) – 925 W16 / link

Summary

Data generated on rising edge of Ultimate clock

Header  16 bits / output

Frame counter  16 bits / output

Data length (useful part of data)  16 bits / output (Sum the 2 W16 to get matrix W16 size)

Data (format on next slide) Max = 1850 x 16 bits / output

Trailer  16 bits / output

Padding zero  32 bits / output

Total stream size per output : 29696 bits = 1856 W16 = 3712 W8

12/06/2010 6/13Ultimate / Test data link, Strasbourg November 2010 IPHC - DRS – CMOS Sensors group - Gilles CLAUS

Steering & Readout : Data Format

Readout configuration N° 3 : 2 outputs (D0, D1) @ 160 MHz

If there is at least one hit in one line, the following data stream is generated

Status/Line word
Address of line

Number of States (9 Max, overflow flag if > 9)

States list – One state = consecutive pixels at 1 in the line
Column address of the first pixel at 1

Number of pixels at 1 - Warning : 0 means one pixel at 1 (value  pixel nb : 0  1, 1  2, 2  3, 3  4)

For each line with hit : one Status/line followed by up to 9 States

O
V
F

N
ot
us
edThe address of the line

number of
States

Bit(0-9)Bit(0-3)

1
514

1
3

1
2

1
1

1
09876543210

Status/ line

not usedthe address of the column

numbe
r of hit
pixels

Bit(0-9)

Bit(0 -1)

1
5

1
4

1
3

1
2

1
1

1
09876543210

State

12/06/2010 7/13Ultimate / Test data link, Strasbourg November 2010 IPHC - DRS – CMOS Sensors group - Gilles CLAUS

Steering & Readout : Bit stream Mux on D0, D1

Readout configuration N° 3 : 2 outputs (D0, D1) @ 160 MHz

Each output has one Header, Frame counter, Data length, Trailer as W16 fields

It may be wise to build W32 fields
Low 16 bits = field on output D0

High 16 bits = field on output D1

Data length ?
The total data length is the sum of the two fields (on D0, D1)

Useful data multiplexed over D0 and D1

The first W16 is on D0, next on D1, and so on

What happens if total W16 number is odd ?
Same W16 number / output – Total is always even !

A dummy W16 is added at end of D1 stream

12/06/2010 8/13Ultimate / Test data link, Strasbourg November 2010 IPHC - DRS – CMOS Sensors group - Gilles CLAUS

12/06/2010 9/13Ultimate / Test data link, Strasbourg November 2010 IPHC - DRS – CMOS Sensors group - Gilles CLAUS

Test data transmission : Why & How ?

Why ?

We have a bus a bit difficult to handle Because all signals (clk, sync, data) are not on the same wire
But this approach is still acceptable at 160 MHz

Therefore all signals (clock, syncho, data) may not have the same delay from Ultimate / DAQ

We must find the best sampling position

Problem complexity will increase on a ladder N x Ultimates = N data paths with different delays !

How ?

Probe signals with an oscilloscope Measure delays
Need to add test points to connect oscilloscope

Signal test path will add delay dispersion = difficult to see real timings Clock period is 6,25 ns !!!

Acquire data & process BER (Bit Error Rate)
Acquires frames – Count errors

Adjust timing via FPGA “ deskewing ” functionality (IODELAY)

Redo the procedure until you get lower BER

12/06/2010 10/13Ultimate / Test data link, Strasbourg November 2010 IPHC - DRS – CMOS Sensors group - Gilles CLAUS

Test data transmission : How to perform the test ?

What do we need on Ultimate side ?

Do we need to generate well known data stream ?
Test at physical level = eye diagram opening – jiiter No

Count data transmission errors Yes

It means that we need a kind of pattern generator inside Ultimate

Do we have one ? … Yes & No …

No because
We can’t apply a pattern during the whole frame length = we can’t replace Ultimate frame by a pattern

Because pattern registers “Line_pat0 ” & “Line_pat1 ” are before Zero Suppression logic

Yes
We can use the Header & Trailer fields + The frame counter  They act as a pattern generator

We can define a hit pattern in the matrix

Define by line  “Line_pat0” even lines / “Line_pat1” odd lines

But this will not be a straight forward way  Need some SW
Because you need to decode data stream to extract a matrix “ bit map” of emulated hits

Compare this bit map to the pattern configured via JTAG

12/06/2010 11/13Ultimate / Test data link, Strasbourg November 2010 IPHC - DRS – CMOS Sensors group - Gilles CLAUS

Test data transmission : Test with header & trailer

Easiest way … but limited statistic

Set hit emulation to 0  Frame will contain only : Header, Frame counter, Trailer (Data length = 0)

On each link we will have 16 (Header) + 16 (Frame counter) + 16 (Trailer) = 48 bits pattern

32 bits have same value (Header + Trailer) on all frames – 16 bits counts frames

The frame period is 185,6 µs = 5398 Hz  253 kb/s on each link

If (???) we want to test a BER @ 10-12 with 1012 bits statistic 1072 hours … 45 days !

12/06/2010 12/13Ultimate / Test data link, Strasbourg November 2010 IPHC - DRS – CMOS Sensors group - Gilles CLAUS

Test data transmission : Test by emulating hits

A bit more complicated … but we have statistic

Create a pattern to fill the matrix

On each link we will have 1850 x 16 bits = 29600 bits

The frame period is 185,6 µs = 5398 Hz  152 Mb/s on each link

If we want to test a BER @ 10-12 with 1012 bits statistic 1,75 hours

12/06/2010 13/13Ultimate / Test data link, Strasbourg November 2010 IPHC - DRS – CMOS Sensors group - Gilles CLAUS

Test data transmission : Conclusion

What is the best way to perform the test ?

First tests  Header & Trailer  but limited statistic 1012 = 45 days – (10.106 = 38 seconds)

If we need a BER test with a stat of 1012 we need to fill frame to get statistic  Emulate hits

How to perform a test by emulating hits ?

Physical level test We don’t need to acquire & check data with DAQ
We need only a pattern generator

We must take into account ZS algorithm to create patterns

Test data transmission = count errorsWe need to acquire & check data with DAQ

We must take into account ZS algorithm to create patterns in both directions

To create the pattern

To decode acquired data & compare to expected pattern

Test automation ? Yes
JTAG sw can be controlled via COM interface

It’s possible to configure JTAG from DAQ sw making request on JTAG sw via COM interface

