HFT Simulation Performance

Andrew Rose

Lawrence Berkeley National Laboratory

Simulation Framework

- Simplifying geometric assumptions
 - Electronics and ladder as "extra" silicon
 - Support structure not present
- Use STAR simulation environment
 - Realistic simulation of TPC dead areas and performance
 - SSD and HFT "idealized" with design performance accuracy, perfect cluster finding

STAR Upgrades Workshop, Dec. 1, 2005

Simulation Geometry

Number of ladders	24	
Ladder active area	192 mm × 19.2 mm	
Number of barrels	2	
Inner barrel (6 ladders)	r = 1.5 cm	
Outer barrel (18 ladders)	r = 5 cm	
Frame read time	4 ms	
Pixel read rate, after zero suppression	63 MHz	
Ladder (w/Al cable) % X ₀	0.36%.38%	
Pointing Accuracy, o	$14 \mu\text{m} + 12 \mu\text{m} (\text{GeV}/c) / p$	
Beam Pipe Thickness	0.5 mm or 0.14% X ₀	

Simulated Detector Response

- Detector Resolution
 - 6μm hit resolution on GEANT points (reality 8.6μm)
 - Only (simulated) source of hit error
- Perfect Alignment
 - No alignment offsets used
- Perfect Cluster Finding (expected ~99%)
 - Two particle impact:

$$\boldsymbol{\varepsilon} \cong \boldsymbol{\varepsilon}_{tracking}^2 \bullet \boldsymbol{\varepsilon}_{cluster}^4$$

• Three particle impact:

$$\boldsymbol{\varepsilon} \cong \boldsymbol{\varepsilon}_{tracking}^3 \bullet \boldsymbol{\varepsilon}_{cluster}^6$$

Simulation Environment (Luminosity)

	HFT Outer Layer	HFT Inner Layer
Radius	5 cm	1.5 cm
Hit Flux	$4,300 \text{ Hz/cm}^2$	$18,000 \text{ Hz/cm}^2$
Hit Density 4 ms Integration	$17/\mathrm{cm}^2$	$72/\mathrm{cm}^2$
Projected Tracking Window Area	0.6 mm^2	0.15 mm^2
Probability of Tracking Window Pileup	10 %	10 %
HFT Hit Resolving Area	0.001 mm^2	0.001 mm^2
Probability of HFT Pileup	0.14%	0.58%

Reconstruction Algorithm

STAR Upgrades Workshop, Dec. 1, 2005

Track to Hit Residuals

Performance Determination

- Hand calculations
 - Methods detailed in the Particle Data Book
- Simulations
 - STAR GEANT based simulation framework
 - Full tracking & signal analysis to predict results

Predicted Performance

• Resolution

STAR Upgrades Workshop, Dec. 1, 2005

9

Track to Hit Residuals

• Residuals agree with resolution prediction

Predicted Performance

Efficiency for adding correct HFT hit to TPC+SSD Track

Predicted Performance

Calculated Ghost Rate

<20% (above 2 GeV/c) for 4x current high luminosity

Simulation Efficiency

- ~50%
 - total tracks
 - Candidate tracks, (TPC+SSD) ~75%
- Luminosity

 1×10^{27}

Simulation Purity

- 1x10²⁷ Luminosity
- 12% Ghosting rate in central collisions
- Higher than expected from calculations

Track DCA

- Hit Finding: TPC + SSD + Vertex
- Track Fit: TPC+SSD+HFT
- HFT DCA
 - TPC+SSD Vertex ~110μm
 - MC vertex $\sim 70 \mu m$
 - 10μm smeared vertex ~70μm

Vertex Resolution

- TPC+SSD+HFT DCA distribution
 - Non-zero mean used as correction
 - Iteration yields best results
- Final resolution ~ 8μm in x,y
 - Order of magnitude improvement
- TPC+SSD Vertex Resolution sets minimum multiplicity for tracking

Vertex Reconstruction

- Vertex resolution in X,Y has Gaussian shape
- Fit poor in Z
 - Peaks at +/- 80µm
 - 10% of events
 - Iterations driving vertex z away from MC value

Vertex Resolution - Iterations

- TPC+SSD+HFT DCA distribution
 - Non-zero mean used as correction
 - Iteration yields best results
- Final resolution ~ 8μm in x,y

STAR Upgrades Workshop, Dec. 1, 2005

Heavy Flavor Simulation Method

- Signal and Background simulated separately
 - Signal vertex smearing (100µm)
 - Signal corrected for Efficiency
 - Signal rate must be renormalized to expected cross sections
- Track Solution (2 HFT points, track momentum)

Progress since HFT Workshop

- Calculations of predicted performance
- HFT Vertex resolution estimate
- D+ study (3 body decay)
- Signal studies using reconstructed vertex

Focus for the Future

- Hand calculations predict better performance than seen in simulation.
- Momentum resolution determination
- Chain integration
- Physics: Ds, B

Conclusions

- Resolutions for track and vertex meet expectations
- Charged Tracks
 - Efficiency 50%, Purity 12%
 - Centrality range 60%-0%
- Vertex Resolution

$$\sigma = \frac{380\mu m}{\sqrt{N}}$$

