Azimuthal Anisotropy Distributions: The Elliptic Power Distribution

Li Yan and Jean-Yves Ollitrault CNRS, Institut de Physique Théorique de Saclay

> and Art Poskanzer LBNL

Main Point

- Initial eccentricity is driving force for flow
- Usual viscous hydro output depends on assumed initial conditions
- We separate hydro response from initial anisotropy based on its non-Gaussian shape
- We obtain hydro response assuming only the initial anisotropy goes to zero at 0 and 1
- The decrease of hydro response with decreasing centrality gives η/s

- Must be between 0 and 1
 - Positive because it is the length of a vector
 - Going from Gaussian to Bessel-Gaussian eliminated the negative values
 - Going from Bessel-Gaussian to the Elliptic Power distribution eliminates values greater than 1
- Participant Eccentricity Ellipse is rotated:

$$(\varepsilon_x, \varepsilon_y) = \left(\frac{\left\langle\sigma_y^2 - \sigma_x^2\right\rangle}{\left\langle\sigma_y^2 + \sigma_x^2\right\rangle}, \frac{\left\langle2\sigma_{xy}\right\rangle}{\left\langle\sigma_y^2 + \sigma_x^2\right\rangle}\right)$$

 $\epsilon = 1$

Pb + Pb MC Glauber

Eccentricity Magnitude ε₂

Bessel-Gaussian goes above 1 but Elliptic Power does not. Elliptic Power fits much better.

Bessel-Gaussian Distribution

$$\frac{dn}{d\varepsilon} = \frac{\varepsilon}{\sigma_0^2} \exp\left(-\frac{\varepsilon^2 + \varepsilon_0^2}{2\sigma_0^2}\right) I_0\left(\frac{\varepsilon \varepsilon_0}{\sigma_0^2}\right)$$

Assumes a 2D Gaussian of width σ_0 in the reaction plane displaced to one side by ϵ_0 Two parameters:

 ϵ_0 mean eccentricity in RP σ_0 eccentricity fluctuations around mean

S.A. Voloshin et al, PLB 659, 537 (2008)

New Elliptic Power Distribution

$$P(\varepsilon_x, \varepsilon_y) = \frac{\alpha}{\pi} (1 - \varepsilon_0^2)^{\alpha + \frac{1}{2}} \frac{(1 - \varepsilon_x^2 - \varepsilon_y^2)^{\alpha - 1}}{(1 - \varepsilon_0 \varepsilon_x)^{2\alpha - 1}}$$

$$\frac{dn}{d\varepsilon} = \frac{2}{\pi} \varepsilon^{\alpha} (1 - \varepsilon^2)^{(\alpha - 1)} (1 - \varepsilon_0^2)^{(\alpha + 1/2)} \int_0^{\pi} (1 - \varepsilon_0 \varepsilon \cos \phi)^{-(1 + 2\alpha)} d\phi$$

Could be expressed as a hypergeometic function, but the ROOT version is not defined everywhere needed. Better to do numerical integration.

Point-like independent sources distributed in a 2D elliptic Gaussian with an eccentricity = ε_0 and a cut off at $\varepsilon = 1$. Also two parameters:

 ε_0 : ellipticity parameter is approx. eccentricity in RP

 α : power parameter describes fluctuations

When $\varepsilon_0 \ll 1$ and $\alpha \gg 1$ becomes Bessel-Gaussian With $\sigma_0 \cong 1/(2\alpha)^{1/2}$

Power Distribution

For $\varepsilon_0=0$ (only fluctuations) the Elliptic Power distribution reduces to the Power distribution:

$$P(\varepsilon_x, \varepsilon_y) = \frac{\alpha}{\pi} (1 - \varepsilon_x^2 - \varepsilon_y^2)^{\alpha - 1}$$
$$\frac{dn}{d\varepsilon} = 2\varepsilon \alpha \left(1 - \varepsilon^2\right)^{\alpha - 1}$$

Yan and Ollitrault, PRL 112, 082301 (2014)

2D isotropic distribution with a cut off at $\epsilon = 1$

One parameter:

 $\boldsymbol{\alpha}$: power parameter describes fluctuations

For Elliptic Power ε_3 from Glauber Found $\varepsilon_0 = 0$, thus Power is OK for ε_3

For $\alpha >> 1$ it becomes a Gaussian^{*} ϵ with $\sigma^2 = 1/(2\alpha)$

Eccentricity Parameters

- Power Distribution
 - Eccentricity fluctuations
 - alpha

Elliptic Power Distribution

- Correlated with a plane plus eccentricity fluctuations
- ε_0 and alpha

Event-by-event viscous hydro Niemi, Denicol, Holopainen, and Huovinen, PRC **87**, 054901 (2013)

к Hydro Response

 $v_n = \kappa_n \varepsilon_n$

New parameter:

к is the response of the media to the initial configuration

assume
$$v_n = \kappa_n \varepsilon_n$$
 n= 2,3
 $\frac{dn}{dv_n} = 1/\kappa_n \frac{dn}{d\varepsilon}$

The v_n distribution is the ϵ_n distribution rescaled by κ_n

Parameters of v_n Distributions

- Power Distribution
 - Flow fluctuations
 - 2: alpha and kappa
 - Good for A+A v₃
 - Good for p+A v₂
- Elliptic Power Distribution
 - Flow correlated with the reaction plane plus flow fluctuations
 - **3**: ε_0 , alpha, and kappa
 - Good for A+A v₂
- Bessel-Gaussian
 - 3: κε₀ and κσ
 - Can not determine kappa

ATLAS Bayesian Unfolding

- ATLAS √s 2.76 TeV Pb+Pb
 - JHEP 11, 183 (2013); arXiv:1305.2942
- v_n distribution with dispersion unfolded
 - To remove "most" of non-flow and fluctuations
- Uses η sub-event method
- Difference of flow vectors
 - Real flow signal cancels
 - Dispersion is twice that of the flow signal
 - Iterative procedure
- Called event-by-event, but it is not
 - Because v₂ for a single event is not known

Jiangyong Jia and Mohapatra, PRC 88, 014907 (2013)

Goodness of Fit

ATLAS Distributions

Bessel-Gaussian can not determine κ because width = $\kappa \sigma$ Elliptic Power shape becomes non-Gaussian for ϵ values close to 1 Ability to measure κ depends on this non-Gaussian shape (v₃ distributions are more Gaussian)

ε₀ Approx. RP Eccentricity

Simulations are about the same

Real data with the linear assumption have ϵ_0 values smaller than simulations for peripheral collisions

a Fluctuation Parameter

a accounts for both initial state fluctuations
 and Gaussian fluctuations
 during the expansion

Real data with the linear assumption are more Gaussian than simulations

a prop. to number of sources in Glauber simulation

more particles, less fluctuations, more Gaussian

к Hydro Response Parameter

 κ_3 is lower than κ_2 because the finer details of higher harmonics are damped more by viscous effects.

Both decrease for peripheral collisions because the smaller size leads to larger viscous damping (~1/R)

viscous hydro calc. of v/ ϵ for $\eta/s=0.19$

(normalized vertically by 1.7)(no systematic errors)(temperature varies little with centrality)

viscous hydro from Teaney and Yan_{18/24}

Non-Linear

$$v_2 = \kappa_2 \varepsilon_2 + \kappa' \kappa_2 \varepsilon_2^3 \qquad \qquad \frac{dN}{dv_2} = \frac{d\varepsilon_2}{dv_2} \frac{dN}{d\varepsilon_2}$$

First significant non-linear term is cubic

Paatelainen, Niemi, Eskola, and Tuominen, QM2014 poster 19/24

Non-Linear Effect

κ' fit

Non-linearity gives agreement with initial state models

к Hydro Response Parameter

Summary

- Rescaled Power and Elliptic Power give good fits
- Non-Gaussian shape allows determination of parameters
- Bigger effect for peripheral collisions
 - More fluctuations to larger anisotropies
- Bigger effect for smaller systems
 - Should study lighter collision systems
- Fits to viscous hydro indicate low value of $\eta/s = 0.19$

Acknowledgments

- Sergei Voloshin for the name Elliptic Power and valuable comments on both papers
- Matt Luzum for pushing the cumulants

- Elliptic Power Distribution (Simulations)
 - PRC 90, 024903 (2014) (arXiv:1405.6595)
- QM2014
 - Nucl. Phys. A, arXiv:1408.0709
- ATLAS and CMS Data analyzed
 - arXiv:1408.0921, ver 2

Monte-Carlo Glauber in x,y space

Gaussian Noise

$$v_n = \kappa_n \varepsilon_n + X_n$$

 X_n is 2D Gaussian noise uncorrelated with ε_n

$$v_{n}\{2\}^{2} = \kappa_{n}^{2} \epsilon_{n}\{2\}^{2} + \langle |X_{n}|^{2} \rangle$$
$$v_{n}\{4\} = \kappa_{n} \epsilon_{n}\{4\}$$
$$v_{n}\{6\} = \kappa_{n} \epsilon_{n}\{6\}$$

Reduces κ_n by constant factor independent of centrality

p + A

- Probably no almond shaped overlap region
- But lots of fluctuations
 - Especially for large impact parameters
- Claims of "Flow" in p + A
- Large v₂{4} is a non-Gaussian effect
- No v₂ distributions
 - Must use cumulants

CMS p + Pb

Just non-Gaussian flow fluctuations!

- CMS √s 5.02 TeV
- PLB 724, 213 (2013)
- Peripheral subtraction
- From cumulants
- Equivalent centrality
 - Based on N_{tracks}

κ from Cumulants of Power Distribution

assume $\varepsilon_0 = 0$ (Power Distribution)

$$\varepsilon_n \{4\} / \varepsilon_n \{2\} = (1 + \alpha/2)^{-1/4}$$
$$\varepsilon_n \{2\} = 1/\sqrt{1 + \alpha}$$

assume $v_n = \kappa_n \varepsilon_n$ (linear)

$$\kappa_{n} = v_{n} \{2\} \sqrt{2 \left(\frac{v_{n}\{2\}}{v_{n}\{4\}}\right)^{4} - 1}$$

The cumulant ratio gives the non-Gaussian shape

Independent of the ε distribution!

Parameters from ATLAS Cumulants

2, 4, and 6 particle cumulants

Shape fits and cumulants give the same result No errors for cumulants

Cumulants of Elliptic Power

$$\begin{split} f_k &\equiv \langle (1 - \varepsilon_n^2)^k \rangle = \frac{\alpha}{\alpha + k} \left(1 - \varepsilon_0^2 \right)^k {}_2F_1 \left(k + \frac{1}{2}, k; \alpha + k + 1; \varepsilon_0^2 \right) \\ &\varepsilon_n \{2\} = (1 - f_1)^{1/2} \\ &\varepsilon_n \{4\} = (1 - 2f_1 + 2f_1^2 - f_2)^{1/4} \\ &\varepsilon_n \{6\} = \left(1 + \frac{9}{2}f_1^2 - 3f_1^3 + 3f_1(\frac{3}{4}f_2 - 1) - \frac{3}{2}f_2 - \frac{1}{4}f_3 \right)^{1/6} \\ &\bigwedge \\ & \text{need} \\ \end{split}$$

Data does not need unfolding but now 3 parameters 2 ratio equations in 2 unknowns Then scale by κappa for hydro response v_n{2} may have non-flow (need large η-gap)